The existence of a real pole-free solution of the fourth order analogue of the Painleve I equation

被引:33
作者
Claeys, T. [1 ]
Vanlessen, M. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3030 Louvain, Belgium
关键词
D O I
10.1088/0951-7715/20/5/006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of a real solution y( x, T) with no poles on the real line of the following fourth order analogue of the Painleve I equation: x = T y - (1/6y(3) + 1/24(y(x)(2) +2yy(xx)) + 1/240y(xxxx)). This proves the existence part of a conjecture posed by Dubrovin. We obtain our result by proving the solvability of an associated Riemann-Hilbert problem through the approach of a vanishing lemma. In addition, by applying the Deift/Zhou steepest-descent method to this Riemann-Hilbert problem, we obtain the asymptotics for y( x, T) as x -> +/-infinity.
引用
收藏
页码:1163 / 1184
页数:22
相关论文
共 36 条
[1]   Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model [J].
Bleher, P ;
Its, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :185-266
[2]   Double scaling limit in the random matrix model: The Riemann-Hilbert approach [J].
Bleher, P ;
Its, A .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (04) :433-516
[3]   UNIVERSAL SCALING OF THE TAIL OF THE DENSITY OF EIGENVALUES IN RANDOM MATRIX MODELS [J].
BOWICK, MJ ;
BREZIN, E .
PHYSICS LETTERS B, 1991, 268 (01) :21-28
[4]   A NONPERTURBATIVE AMBIGUITY FREE SOLUTION OF A STRING MODEL [J].
BREZIN, E ;
MARINARI, E ;
PARISI, G .
PHYSICS LETTERS B, 1990, 242 (01) :35-38
[5]  
CLAEYS T, 2007, IN PRESS COMMUN MATH
[6]  
CLAEYS T, 2007, IN PRESS ANN MATH
[7]   Universality of the double scaling limit in random matrix models [J].
Claeys, Tom ;
Kuijlaars, Arno B. J. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (11) :1573-1603
[8]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1491, DOI 10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.0.CO
[9]  
2-#
[10]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1335, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO