Structural and cathodoluminescence properties of gallium nitride nanorods by HVPE

被引:0
|
作者
Kim, HM [1 ]
Kim, DS
Kim, DY
Kang, TW
Chung, KS
机构
[1] Dongguk Univ, Quantum Funct Semicond Res Ctr, Seoul 100715, South Korea
[2] Kyung Hee Univ, Dept Elect Engn, Yongin 449701, South Korea
关键词
GaN; nanorod; HVPE; cathodoluminescence;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Single crystalline GaN nanorods are formed on a sapphire substrate by hydride vapor phase epitaxy (HVPE). Their structural and optical properties are investigated by x-ray diffraction scanning and transmission electron microscopy, and cathodoluminesence (CL) techniques. A high density of straight and well-aligned nanorods with a diameter of 80-120 nm formed uniformly over the entire 2 inch sapphire substrate. The x-ray diffraction patterns and transmission electron microscopic images indicate that the formed GaN nanorods arc pure single crystals and preferentially oriented in the c-axis direction. We observed a higher CL peak position of individual GaN nanorods than that of bulk GaN as well as a blueshift of CL peak position with decreasing diameter of GaN nanorods, which are attributed to a quantum confinement effect in one-dimensional GaN nanorods. We demonstrate that well-aligned, single crystalline GaN nanorods with high density, high crystal quality, and good spatial uniformity are formed by the HVPE method.
引用
收藏
页码:S222 / S225
页数:4
相关论文
共 50 条
  • [31] Cathodoluminescence inhomogeneity in ZnO nanorods
    Foley, Matthew
    Ton-That, Cuong
    Phillips, Matthew R.
    APPLIED PHYSICS LETTERS, 2008, 93 (24)
  • [32] Scanning electron microscopy and cathodoluminescence study of the epitaxial lateral overgrowth (ELO) process for gallium nitride
    M. A. L. Johnson
    Zhonghai Yu
    J. D. Brown
    N. A. El-Masry
    J. W. Cook
    J. F. Schetzina
    Journal of Electronic Materials, 1999, 28 : 295 - 300
  • [33] Scanning electron microscopy and cathodoluminescence study of the epitaxial lateral overgrowth (ELO) process for gallium nitride
    Johnson, MAL
    Yu, ZH
    Brown, JD
    El-Masry, NA
    Cook, JW
    Schetzina, JF
    JOURNAL OF ELECTRONIC MATERIALS, 1999, 28 (03) : 295 - 300
  • [34] Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires
    Sanders, Aric
    Blanchard, Paul
    Bertness, Kris
    Brubaker, Matthew
    Dodson, Christopher
    Harvey, Todd
    Herrero, Andrew
    Rourke, Devin
    Schlager, John
    Sanford, Norman
    Chiaramonti, Ann N.
    Davydov, Albert
    Motayed, Abhishek
    Tsvetkov, Denis
    NANOTECHNOLOGY, 2011, 22 (46)
  • [35] Gallium nitride nanorods fabricated by inductively coupled plasma reactive ion etching
    Yu, CC
    Chu, CF
    Tsai, JY
    Huang, HW
    Hsueh, TH
    Lin, CF
    Wang, SC
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2002, 41 (8B): : L910 - L912
  • [36] Gallium nitride nanowire devices and photoelectric properties
    Teker, Kasif
    SENSORS AND ACTUATORS A-PHYSICAL, 2014, 216 : 142 - 146
  • [37] Preparation and Properties of Electrospun Gallium Nitride Nanofibers
    Melendez, Anamaris
    Morales, Kristle
    Ramos, Idalia
    Campo, Eva
    Santiago-Aviles, Jorge J.
    2009 9TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2009, : 269 - 272
  • [38] Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods
    Liu, Xiaohe
    Qiu, Guanzhou
    Zhao, Yan
    Zhang, Ning
    Yi, Ran
    JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 439 (1-2) : 275 - 278
  • [39] Structural, Elastic Constant, and Vibrational Properties of Wurtzite Gallium Nitride: A First-Principles Approach
    Usman, Zahid
    Cao, Chuanbao
    Khan, Waheed S.
    Mahmood, Tariq
    Hussain, Sajad
    Nabi, Ghulam
    JOURNAL OF PHYSICAL CHEMISTRY A, 2011, 115 (50) : 14502 - 14509
  • [40] Revelation of dislocations in HVPE GaN single crystal by KOH etching with Na2O2 additive and cathodoluminescence mapping
    Yao, Y.
    Ishikawa, Y.
    Sugawara, Y.
    Yokoe, D.
    Sudo, M.
    Okada, N.
    Tadatomo, K.
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 99 : 83 - 87