Improving the modified Gauss-Seidel method for Z-matrices

被引:75
作者
Kohno, T [1 ]
Kotakemori, H [1 ]
Niki, H [1 ]
Usui, M [1 ]
机构
[1] OKAYAMA UNIV SCI,DEPT APPL SCI,OKAYAMA 700,JAPAN
关键词
D O I
10.1016/S0024-3795(97)00063-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In 1991 A. D. Gunawardena et al. reported that the convergence rate of the Gauss-Seidel method with a preconditioning matrix I + S is superior to that of the basic iterative method. In this paper, we use the preconditioning matrix I + S(cr). If a coefficient matrix A is an irreducibly diagonally dominant Z-matrix, then [I + S(alpha)]A is also a strictly diagonally dominant Z-matrix. It is shown that the proposed method is also superior to other iterative methods. (C) 1997 Elsevier Science Inc.
引用
收藏
页码:113 / 123
页数:11
相关论文
共 5 条
[1]   MODIFIED ITERATIVE METHODS FOR CONSISTENT LINEAR-SYSTEMS [J].
GUNAWARDENA, AD ;
JAIN, SK ;
SNYDER, L .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 154 :123-143
[2]   CONVERGENCE CRITERIA FOR SUCCESSIVE OVERRELAXATION [J].
JAMES, KR ;
RIHA, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (02) :137-143
[3]   CONVERGENCE OF MATRIX ITERATIONS SUBJECT TO DIAGONAL DOMINANCE [J].
JAMES, KR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (03) :478-484
[4]   ADAPTIVE GAUSS-SEIDEL METHOD FOR LINEAR-SYSTEMS [J].
USUI, M ;
NIKI, H ;
KOHNO, T .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1994, 51 (1-2) :119-125
[5]  
Varga RS., 1962, Iterative analysis