Primal Superlinear Convergence of Sqp Methods in Piecewise Linear-Quadratic Composite Optimization

被引:10
作者
Sarabi, M. Ebrahim [1 ]
机构
[1] Miami Univ, Dept Math, Oxford, OH 45065 USA
关键词
SQP methods; Primal superlinear convergence; Noncriticality; Second-order sufficient conditions; Piecewise linear-quadratic composite problems; NEWTON-TYPE METHODS; EPI-DIFFERENTIABILITY;
D O I
10.1007/s11228-021-00580-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper mainly concerns with the primal superlinear convergence of the quasi-Newton sequential quadratic programming (SQP) method for piecewise linear-quadratic composite optimization problems. We show that the latter primal superlinear convergence can be justified under the noncriticality of Lagrange multipliers and a version of the Dennis-More condition. Furthermore, we show that if we replace the noncriticality condition with the second-order sufficient condition, this primal superlinear convergence is equivalent with an appropriate version of the Dennis-More condition. We also recover Bonnans' result in (Appl. Math. Optim. 29, 161-186, 1994) for the primal-dual superlinear of the basic SQP method for this class of composite problems under the second-order sufficient condition and the uniqueness of Lagrange multipliers. To achieve these goals, we first obtain an extension of the reduction lemma for convex Piecewise linear-quadratic functions and then provide a comprehensive analysis of the noncriticality of Lagrange multipliers for composite problems. We also establish certain primal estimates for KKT systems of composite problems, which play a significant role in our local convergence analysis of the quasi-Newton SQP method.
引用
收藏
页码:1 / 37
页数:37
相关论文
共 36 条
  • [1] Attouch H, 1989, PROTO DIFFERENTIABIL
  • [2] ON THE LOCAL CONVERGENCE OF QUASI-NEWTON METHODS FOR CONSTRAINED OPTIMIZATION
    BOGGS, PT
    TOLLE, JW
    WANG, P
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1982, 20 (02) : 161 - 171
  • [3] The multiproximal linearization method for convex composite problems
    Bolte, Jerome
    Chen, Zheng
    Pauwels, Edouard
    [J]. MATHEMATICAL PROGRAMMING, 2020, 182 (1-2) : 1 - 36
  • [4] Bonnans J.F., 2006, NUMERICAL OPTIMIZATI
  • [5] LOCAL ANALYSIS OF NEWTON-TYPE METHODS FOR VARIATIONAL-INEQUALITIES AND NONLINEAR-PROGRAMMING
    BONNANS, JF
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 1994, 29 (02) : 161 - 186
  • [6] Bonnans JF., 2000, SPRING S OPERAT RES, DOI 10.1007/978-1-4612-1394-9
  • [7] Burke J.V., 2019, MATH OPER RES
  • [8] Criticality of Lagrange multipliers in extended nonlinear optimization
    Do, Hong
    Mordukhovich, Boris S.
    Sarabi, M. Ebrahim
    [J]. OPTIMIZATION, 2021, 70 (03) : 511 - 544
  • [9] Dontchev A.L., 2020, MATH PROGRAMMING DAT, P65
  • [10] Dontchev AL., 2014, IMPLICIT FUNCTIONS S