Proximal methods for cohypomonotone operators

被引:48
作者
Combettes, PL [1 ]
Pennanen, T
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75005 Paris, France
[2] Helsinki Sch Econ, Dept Management Sci, Helsinki 00101, Finland
关键词
cohypomonotone operator; common zero problem; hypomonotone operator; method of multipliers; nonlinear programming; proximal point method; weak convergence;
D O I
10.1137/S0363012903427336
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Conditions are given for the viability and the weak convergence of an inexact, relaxed proximal point algorithm for finding a common zero of countably many cohypomonotone operators in a Hilbert space. In turn, new convergence results are obtained for an extended version of the proximal method of multipliers in nonlinear programming.
引用
收藏
页码:731 / 742
页数:12
相关论文
共 29 条
[1]  
[Anonymous], 1982, PROGR NONDIFFERENTIA
[2]  
Aubin J. P., 1990, Set-valued analysis, DOI 10.1007/978-0-8176-4848-0
[3]   A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces [J].
Bauschke, HH ;
Combettes, PL .
MATHEMATICS OF OPERATIONS RESEARCH, 2001, 26 (02) :248-264
[4]  
BOURBAKI N, 1990, TOPOLOGIE GEN, V1
[5]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[6]   CONVERGENCE THEOREMS FOR SEQUENCES OF NONLINEAR OPERATORS IN BANACH SPACES [J].
BROWDER, FE .
MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) :201-&
[7]  
Combettes, 2001, INHERENTLY PARALLEL, V8, P115, DOI DOI 10.1016/S1570-579X(01)80010-0
[8]  
Combettes PL, 1997, APPL MATH OPT, V35, P311
[9]   Cyclic hypomonotonicity, cyclic submonotonicity, and integration [J].
Daniilidis, A ;
Georgiev, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 122 (01) :19-39
[10]  
DONTCHEV A.L., 1998, LECT NOTES PURE APPL, V195, P65