Multisource Remote Sensing Classification for Coastal Wetland Using Feature Intersecting Learning

被引:10
作者
Han, Zhen [1 ]
Gao, Yunhao [2 ]
Jiang, Xiangyang [3 ]
Wang, Jianbu [4 ]
Li, Wei [2 ]
机构
[1] Qingdao Marine Remote Sensing Informat Technol Co, Qingdao 266101, Peoples R China
[2] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[3] Shandong Marine Resources & Environm Res Inst, Shandong Prov Key Lab Restorat Marine Ecol, Yantai 264006, Peoples R China
[4] Minist Nat Resources, First Inst Oceanog, Lab Marine Phys & Remote Sensing, Qingdao 266061, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Wetlands; Rivers; Remote sensing; Convolutional neural networks; Support vector machines; Spatial resolution; Asymmetric information fusion; attention feature selection (AFS); convolutional neural network (CNN); multisource wetland classification;
D O I
10.1109/LGRS.2022.3161578
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Accurate remote sensing monitoring of wetland ground objects is of great significance for ecological protection. In this letter, a convolutional neural network based on feature intersecting learning (FIL-CNN) is designed for wetland classification using multisource remote sensing data. The multi-layer shift feature fusion (MSFF) and attention feature selection (AFS) modules are designed to extract the complementary merits. Specifically, the MSFF is applied to each feature extraction unit, and the asymmetric information fusion is achieved through the spatial position shift of grouped features. Thus, the diversified feature representation is achieved. In the prediction stage, the AFS is executed to explore the channel mutually exclusive relationship between multisource features, resulting in emphasizing the meaningful features and eliminating the unnecessary ones. The experimental results prove the effectiveness and generalization of the proposed FIL-CNN on the wetland datasets.
引用
收藏
页数:5
相关论文
共 16 条
[1]   Data-adaptive low-rank modeling and external gradient prior for single image super-resolution [J].
Chang, Kan ;
Zhang, Xueyu ;
Ding, Pak Lun Kevin ;
Li, Baoxin .
SIGNAL PROCESSING, 2019, 161 :36-49
[2]  
Gao Y., 2022, IEEE Trans. Geosci. Remote Sens, V60, P1
[3]   Classification of Hyperspectral and LiDAR Data Using Coupled CNNs [J].
Hang, Renlong ;
Li, Zhu ;
Ghamisi, Pedram ;
Hong, Danfeng ;
Xia, Guiyu ;
Liu, Qingshan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07) :4939-4950
[4]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[5]   Swin Transformer and Deep Convolutional Neural Networks for Coastal Wetland Classification Using Sentinel-1, Sentinel-2, and LiDAR Data [J].
Jamali, Ali ;
Mahdianpari, Masoud .
REMOTE SENSING, 2022, 14 (02)
[6]  
Jang E., 2016, ARXIV
[7]   Going Deeper With Contextual CNN for Hyperspectral Image Classification [J].
Lee, Hyungtae ;
Kwon, Heesung .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (10) :4843-4855
[8]   Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification [J].
Li, Wei ;
Chen, Chen ;
Su, Hongjun ;
Du, Qian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (07) :3681-3693
[9]   Joint Classification of Hyperspectral and Multispectral Images for Mapping Coastal Wetlands [J].
Liu, Chang ;
Tao, Ran ;
Li, Wei ;
Zhang, Mengmeng ;
Sun, Weiwei ;
Du, Qian .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) :982-996
[10]   Remote sensing for wetland classification: a comprehensive review [J].
Mahdavi, Sahel ;
Salehi, Bahram ;
Granger, Jean ;
Amani, Meisam ;
Brisco, Brian ;
Huang, Weimin .
GISCIENCE & REMOTE SENSING, 2018, 55 (05) :623-658