A note on the size of minimal covers

被引:4
作者
Costa, Vaston
Haeusler, Edward
Laber, Eduardo S.
Nogueira, Loana
机构
[1] Pontificia Univ Catolica Rio de Janeiro, Dept Informat, BR-22453900 Rio De Janeiro, Brazil
[2] IC UFF, BR-24130240 Niteroi, RJ, Brazil
关键词
finite combinatorial problems; theory of computation; computational complexity; graphs; boolean functions; vertex cover;
D O I
10.1016/j.ipl.2006.10.012
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the class of monotone boolean functions f : {0, 1}(n) -> {0, 1} where all I-certificates have size 2, we prove the tight bound n <= (lambda + 2)(2)/4, where lambda is the size of the largest 0-certificate of f. This result can be translated to graph language as follows: for every graph G = (V, E) the inequality vertical bar V vertical bar <= (lambda + 2)(2)/4 holds, where lambda is the size of the largest minimal vertex cover of G. In addition, there are infinitely many graphs for which this inequality is tight. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:124 / 126
页数:3
相关论文
共 7 条
[1]   Complexity measures and decision tree complexity: a survey [J].
Buhrman, H ;
de Wolf, R .
THEORETICAL COMPUTER SCIENCE, 2002, 288 (01) :21-43
[2]   Query strategies for priced information [J].
Charikar, M ;
Fagin, R ;
Guruswami, V ;
Kleinberg, J ;
Raghavan, P ;
Sahai, A .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2002, 64 (04) :785-819
[3]  
CICALESE F, UNPUB COMPETITIVE RA
[4]  
CICALESE F, 2005, P 37 ACM S THEOR COM
[5]  
JUKNA S, 2001, EATCS TEXTS THEORETI
[6]   A TIGHT OMEGA-(LOGLOG-N)-BOUND ON THE TIME FOR PARALLEL RAMS TO COMPUTE NONDEGENERATED BOOLEAN FUNCTIONS [J].
SIMON, HU .
INFORMATION AND CONTROL, 1982, 55 (1-3) :102-107
[7]  
WEGENER I, 1985, INFORM CONTROL, V67, P212, DOI 10.1016/S0019-9958(85)80036-X