BerlinMOD: a benchmark for moving object databases

被引:72
作者
Duntgen, Christian [1 ]
Behr, Thomas [1 ]
Gueting, Ralf Hartmut [1 ]
机构
[1] Univ Hagen, Fac Math & Comp Sci, D-58084 Hagen, Germany
关键词
Benchmark; Moving object database; Data generator; Spatio-temporal database; Trajectory; NEAREST-NEIGHBOR QUERIES;
D O I
10.1007/s00778-009-0142-5
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This document presents a method to design scalable and representative moving object data (MOD) and two sets of queries for benchmarking spatio-temporal DBMS. Instead of programming a dedicated generator software, we use the existing Secondo DBMS to create benchmark data. The benchmark is based on a simulation scenario, where the positions of a sample of vehicles are observed for an arbitrary period of time within the street network of Berlin. We demonstrate the data generator's extensibility by showing how to achieve more natural movement generation patterns, and how to disturb the vehicles' positions to create noisy data. As an application and for reference, we also present first benchmarking results for the Secondo DBMS. Whereas the benchmark focuses on range queries, we demonstrate its ability to incorporate new future classes of queries by presenting a preliminary extension handling various nearest neighbour queries. Such a benchmark is useful in several ways: It provides well-defined data sets and queries for experimental evaluations; it simplifies experimental repeatability; it emphasizes the development of complete systems; it points out weaknesses in existing systems motivating further research. Moreover, the BerlinMOD benchmark allows one to compare different representations of the same moving objects.
引用
收藏
页码:1335 / 1368
页数:34
相关论文
共 50 条
[21]   Wavelet analysis of the moving object trajectory [J].
Qi, Cuihong ;
Shu, Hong ;
Pang, Jun ;
Sedas, Diana Quesada .
GEOINFORMATICS 2006: GEOSPATIAL INFORMATION TECHNOLOGY, 2006, 6421
[22]   A new moving peaks benchmark with attractors for dynamic evolutionary algorithms [J].
Fox, Matthew ;
Yang, Shengxiang ;
Caraffini, Fabio .
SWARM AND EVOLUTIONARY COMPUTATION, 2022, 74
[23]   GeoYCSB: A Benchmark Framework for the Performance and Scalability Evaluation of NoSQL Databases for Geospatial Workloads [J].
Kim, Suneuy ;
Kanwar, Yuvraj Singh .
2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, :3666-3675
[24]   Multi-attribute object detection benchmark for smart city [J].
Yaowei Wang ;
Zhouxin Yang ;
Rui Liu ;
Deng Li ;
Yuandu Lai ;
Lihan Ouyang ;
Leyuan Fang ;
Yahong Han .
Multimedia Systems, 2022, 28 :2423-2435
[25]   Multi-attribute object detection benchmark for smart city [J].
Wang, Yaowei ;
Yang, Zhouxin ;
Liu, Rui ;
Li, Deng ;
Lai, Yuandu ;
Ouyang, Lihan ;
Fang, Leyuan ;
Han, Yahong .
MULTIMEDIA SYSTEMS, 2022, 28 (06) :2423-2435
[26]   BAG OF WORDS FOR LARGE SCALE OBJECT RECOGNITION Properties and Benchmark [J].
Aly, Mohamed ;
Munich, Mario ;
Perona, Pietro .
VISAPP 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, 2011, :299-306
[27]   Prediction of a moving object based on monocular vision [J].
Song Y. ;
Xiao J. ;
Zhao Y. ;
Wang G. .
Journal of Computational and Theoretical Nanoscience, 2016, 13 (07) :4373-4378
[28]   Querying imprecise data in moving object environments [J].
Cheng, R ;
Kalashnikov, DV ;
Prabhakar, S .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2004, 16 (09) :1112-1127
[29]   Evaluating Query Performance on Object-Relational Spatial Databases [J].
Zhou, Zhonghai ;
Zhou, Bin ;
Li, Wenwen ;
Griglak, Brian ;
Caiseda, Carmen ;
Huang, Qunying .
2009 2ND IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, VOL 4, 2009, :489-+
[30]   Hierarchical Few-Shot Object Detection: Problem, Benchmark and Method [J].
Zhang, Lu ;
Wang, Yang ;
Zhou, Jiaogen ;
Zhang, Chenbo ;
Zhang, Yinglu ;
Guan, Jihong ;
Bian, Yatao ;
Zhou, Shuigeng .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, :2002-2011