Resonance in the collision of two discrete intrinsic localized excitations

被引:25
作者
Cai, D [1 ]
Bishop, AR
Gronbech-Jensen, N
机构
[1] Univ Calif Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[2] Univ Calif Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 1997年 / 56卷 / 06期
关键词
D O I
10.1103/PhysRevE.56.7246
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The collision dynamics of two solitonlike localized excitations in a nonintegrable discrete (1 x 1)-dimensional nonlinear Schrodinger system is studied numerically. It is demonstrated that the collision dynamics exhibits a complicated resonance structure of interlacing bound-state regions and escape regions of localized excitations with a sensitive dependence on the incoming energies of the localized excitations. We emphasize that this resonance is a combined effect of discreteness and nonintegrability of the system and contrast it with topological kink-antikink collisions in phi(4) and related systems.
引用
收藏
页码:7246 / 7252
页数:7
相关论文
共 38 条