Cliques in the Union of C4-Free Graphs

被引:0
作者
Othman, Abeer [1 ]
Berger, Eli [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
基金
以色列科学基金会; 美国国家科学基金会;
关键词
C-4-free graphs; Cliques; Obedient sets;
D O I
10.1007/s00373-018-1898-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B and R be two simple C-4-free graphs with the same vertex set V, and let B. R be the simple graph with vertex set V and edge set E(B). E(R). We prove that if B. R is a complete graph, then there exists a B-clique X, an R-clique Y and a set Z which is a clique both in B and in R, such that V = X. Y. Z. For general B and R, not necessarily forming together a complete graph, we obtain that omega(B boolean OR R) <= omega(B) + omega(R) + 1/2 min(omega(B), omega(R)) and omega(B boolean OR R) <= omega(B) + omega(R) + omega(B boolean AND R) where B boolean AND R is the simple graph with vertex set V and edge set E(B) boolean AND E(R).
引用
收藏
页码:607 / 612
页数:6
相关论文
共 4 条
[1]   Cliques in the union of graphs [J].
Aharoni, Ron ;
Berger, Eli ;
Chudnovsky, Maria ;
Ziani, Juba .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 114 :170-186
[2]  
Berger E, 2005, COMBINATORICA, V25, P1
[3]  
Gyarfas A., 2015, ARXIV150903408
[4]  
Gyarfas A., 1970, COMBINATORIAL THEORY, VII, P571