Deep diversification of an AAV capsid protein by machine learning

被引:190
作者
Bryant, Drew H. [1 ]
Bashir, Ali [1 ]
Sinai, Sam [2 ,3 ,4 ,5 ]
Jain, Nina K. [2 ,3 ]
Ogden, Pierce J. [2 ,3 ,7 ]
Riley, Patrick F. [1 ]
Church, George M. [2 ,3 ]
Colwell, Lucy J. [1 ,6 ]
Kelsic, Eric D. [2 ,3 ,4 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[3] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[4] Dyno Therapeut, Cambridge, MA 02139 USA
[5] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[6] Univ Cambridge, Dept Chem, Cambridge, England
[7] Manifold Biotechnol, Allston, MA USA
关键词
FITNESS LANDSCAPE; THERMODYNAMIC STABILITY; SEQUENCE ALIGNMENTS; IN-VITRO; EVOLUTION; GENE; THERAPY;
D O I
10.1038/s41587-020-00793-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Modern experimental technologies can assay large numbers of biological sequences, but engineered protein libraries rarely exceed the sequence diversity of natural protein families. Machine learning (ML) models trained directly on experimental data without biophysical modeling provide one route to accessing the full potential diversity of engineered proteins. Here we apply deep learning to design highly diverse adeno-associated virus 2 (AAV2) capsid protein variants that remain viable for packaging of a DNA payload. Focusing on a 28-amino acid segment, we generated 201,426 variants of the AAV2 wild-type (WT) sequence yielding 110,689 viable engineered capsids, 57,348 of which surpass the average diversity of natural AAV serotype sequences, with 12-29 mutations across this region. Even when trained on limited data, deep neural network models accurately predict capsid viability across diverse variants. This approach unlocks vast areas of functional but previously unreachable sequence space, with many potential applications for the generation of improved viral vectors and protein therapeutics. Viable AAV capsids are designed with a machine learning approach.
引用
收藏
页码:691 / 696
页数:6
相关论文
共 30 条
[1]   Drawing a high-resolution functional map of adeno-associated virus capsid by massively parallel sequencing [J].
Adachi, Kei ;
Enoki, Tatsuji ;
Kawano, Yasuhiro ;
Veraz, Michael ;
Nakai, Hiroyuki .
NATURE COMMUNICATIONS, 2014, 5
[2]   Unified rational protein engineering with sequence-based deep representation learning [J].
Alley, Ethan C. ;
Khimulya, Grigory ;
Biswas, Surojit ;
AlQuraishi, Mohammed ;
Church, George M. .
NATURE METHODS, 2019, 16 (12) :1315-+
[3]   A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function [J].
Araya, Carlos L. ;
Fowler, Douglas M. ;
Chen, Wentao ;
Muniez, Ike ;
Kelly, Jeffery W. ;
Fields, Stanley .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (42) :16858-16863
[4]   Evolution of a designed protein assembly encapsulating its own RNA genome [J].
Butterfield, Gabriel L. ;
Lajoie, Marc J. ;
Gustafson, Heather H. ;
Sellers, Drew L. ;
Nattermann, Una ;
Ellis, Daniel ;
Bale, Jacob B. ;
Ke, Sharon ;
Lenz, Garreck H. ;
Yehdego, Angelica ;
Ravichandran, Rashmi ;
Pun, Suzie H. ;
King, Neil P. ;
Baker, David .
NATURE, 2017, 552 (7685) :415-+
[5]   Worldwide Epidemiology of Neutralizing Antibodies to Adeno-Associated Viruses [J].
Calcedo, Roberto ;
Vandenberghe, Luk H. ;
Gao, Guangping ;
Lin, Jianping ;
Wilson, James M. .
JOURNAL OF INFECTIOUS DISEASES, 2009, 199 (03) :381-390
[6]   Directing evolution: the next revolution in drug discovery? [J].
Davis, Andrew M. ;
Plowright, Alleyn T. ;
Valeur, Eric .
NATURE REVIEWS DRUG DISCOVERY, 2017, 16 (10) :681-698
[7]   Gene therapy comes of age [J].
Dunbar, Cynthia E. ;
High, Katherine A. ;
Joung, J. Keith ;
Kohn, Donald B. ;
Ozawa, Keiya ;
Sadelain, Michel .
SCIENCE, 2018, 359 (6372) :175-+
[8]   Evolutionary constraints in fitness landscapes [J].
Ferretti, Luca ;
Weinreich, Daniel ;
Tajima, Fumio ;
Achaz, Guillaume .
HEREDITY, 2018, 121 (05) :466-481
[9]   Improving catalytic function by ProSAR-driven enzyme evolution [J].
Fox, Richard J. ;
Davis, S. Christopher ;
Mundorff, Emily C. ;
Newman, Lisa M. ;
Gavrilovic, Vesna ;
Ma, Steven K. ;
Chung, Loleta M. ;
Ching, Charlene ;
Tam, Sarena ;
Muley, Sheela ;
Grate, John ;
Gruber, John ;
Whitman, John C. ;
Sheldon, Roger A. ;
Huisman, Gjalt W. .
NATURE BIOTECHNOLOGY, 2007, 25 (03) :338-344
[10]   In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses [J].
Grimm, Dirk ;
Lee, Joyce S. ;
Wang, Lora ;
Desai, Tushar ;
Akache, Bassel ;
Storm, Theresa A. ;
Kay, Mark A. .
JOURNAL OF VIROLOGY, 2008, 82 (12) :5887-5911