Real-time Analysis and Visualization for Big Data of Energy Consumption

被引:0
作者
Li, Jiaxue [1 ,2 ]
Song, Wei [1 ]
Fong, Simon [2 ]
机构
[1] North China Univ Technol, Dept Digital Media Technol, Beijing, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Taipa, Macau, Peoples R China
来源
2017 INTERNATIONAL CONFERENCE ON SOFTWARE AND E-BUSINESS (ICSEB 2017) | 2015年
关键词
big data; energy consumption; K-Means; DirectX; CUDA;
D O I
10.1145/3178212.3178229
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a research on real-time analysis and visualization for big data of energy consumption. In this research, we access real-time energy consumption data from cloud storage by a Transmission Control Protocol/Internet Protocol (TCP/IP). In order to optimize K-Means clustering algorithm, we implement CUDA C programming to finish data-intensive calculation in the Graphic Processing Unit (GPU), which enhances the efficiency of analysis for big data of energy consumption. Meanwhile, to realize data visualization, we draw the data mining results in a multidimensional plane utilizing DirectX, which is a standard graphics API. We also render the original energy consumption data directly in the form of four-dimensional geometry with the plane together, so as to obtain more useful information intuitively.
引用
收藏
页码:13 / 16
页数:4
相关论文
共 50 条
[1]   Platform for real-time data analysis and visualization based on Big Data methods [J].
Ferreira, Gabriel ;
Alves, Paulo ;
de Almeida, Simone .
PROCEEDINGS OF 2021 16TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2021), 2021,
[2]   Data pipeline for real-time energy consumption data management and prediction [J].
Im, Jeonghwan ;
Lee, Jaekyu ;
Lee, Somin ;
Kwon, Hyuk-Yoon .
FRONTIERS IN BIG DATA, 2024, 7
[3]   RUBA: Real-time Unstructured Big Data Analysis Framework [J].
Kim, Jaein ;
Kim, Nacwoo ;
Lee, Byungtak ;
Park, Joonho ;
Seo, Kwangik ;
Park, Hunyoung .
2013 INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2013): FUTURE CREATIVE CONVERGENCE TECHNOLOGIES FOR NEW ICT ECOSYSTEMS, 2013, :520-524
[4]   Near real-time streaming analysis of big fusion data [J].
Kube, R. ;
Churchill, R. M. ;
Chang, C. S. ;
Choi, J. ;
Wang, R. ;
Klasky, S. ;
Stephey, L. ;
Dart, E. ;
Choi, M. J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2022, 64 (03)
[5]   Real-Time Big Data Analytics and Proactive Traffic Safety Management Visualization System [J].
Abdel-Aty, Mohamed ;
Zheng, Ou ;
Wu, Yina ;
Abdelraouf, Amr ;
Rim, Heesub ;
Li, Pei .
JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (08)
[6]   Web-Application For Real-Time Big Data Visualization Of Complex Physical Experiments [J].
Sergeevich, Korovin Aleksandr ;
Ovseevna, Abdrashitova Maria ;
Petrovich, Skirnevskij Igor .
2015 INTERNATIONAL SIBERIAN CONFERENCE ON CONTROL AND COMMUNICATIONS (SIBCON), 2015,
[7]   Real-Time Large-Scale Big Data Networks Analytics and Visualization Architecture [J].
Chopade, Pravin ;
Zhan, Justin ;
Roy, Kaushik ;
Flurchick, Kenneth .
2015 12TH INTERNATIONAL CONFERENCE & EXPO ON EMERGING TECHNOLOGIES FOR A SMARTER WORLD (CEWIT), 2015,
[8]   Energy consumption model with real-time data for driving range extension of electric buses [J].
Ekici, Yunus Emre ;
Aydin, Ahmet Arif ;
Karadag, Teoman ;
Akdag, Ozan ;
Ates, Abdullah .
SUSTAINABLE FUTURES, 2025, 9
[9]   A survey on data stream, big data and real-time [J].
Gomes E.H.A. ;
Plentz P.D.M. ;
De Rolt C.R. ;
Dantas M.A.R. .
International Journal of Networking and Virtual Organisations, 2019, 20 (02) :143-167
[10]   A Scalable Streaming Big Data Architecture for Real-Time Sentiment Analysis [J].
Ayvaz, Serkan ;
Shiha, Mohammed O. .
PROCEEDINGS OF 2018 2ND INTERNATIONAL CONFERENCE ON CLOUD AND BIG DATA COMPUTING (ICCBDC 2018), 2018, :47-51