A multichannel semicircular canal neural prosthesis using electrical stimulation to restore 3-D vestibular sensation

被引:119
作者
Della Santina, Charles C.
Migliaccio, Americo A.
Patel, Amit H.
机构
[1] Johns Hopkins Sch Med, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21287 USA
[2] Johns Hopkins Sch Med, Dept Biomed Engn, Baltimore, MD 21287 USA
关键词
balance; bilateral vestibular deficiency; Chinchilla; gentamicin; implant; labyrinth; vestibular prosthesis; vestibulo-ocular reflex; VOR;
D O I
10.1109/TBME.2007.894629
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bilateral loss of vestibular sensation can be disabling. Those afflicted suffer illusory visual field movement during head movements, chronic disequilibrium and postural instability due to failure of vestibulo-ocular and vestibulo-spinal reflexes. A neural prosthesis that emulates the normal transduction of head rotation by semicircular canals could significantly improve quality of life for these patients. Like the three semicircular canals in a normal ear, such a device should at least transduce three orthogonal (or linearly separable) components of head rotation into activity on corresponding ampullary branches of the vestibular nerve. We describe the design, circuit performance and in vivo application of a head-mounted, semi-implantable multichannel vestibular prosthesis that encodes head movement in three dimensions as pulse-frequency-modulated electrical stimulation of three or more ampullary nerves. In chinchillas treated with intratympanic gentamicin to ablate vestibular sensation bilaterally, prosthetic stimuli elicited a partly compensatory angular vestibulo-ocullar reflex in multiple planes. Minimizing misalignment between the axis of eye and head rotation, apparently caused by current spread beyond each electrode's targeted nerve branch, emerged as a key challenge. Increasing stimulation selectivity via improvements in electrode design, surgical technique and stimulus protocol will likely be required to restore AVOR function over the full range of normal behavior.
引用
收藏
页码:1016 / 1030
页数:15
相关论文
共 66 条
[1]  
Abbas PJ, 2004, SPR HDB AUD, V20, P149
[2]  
Agnew W. F., 1990, NEURAL PROSTHESES
[3]  
[Anonymous], 1999, The Neurology of Eye Movements
[4]   CHANGES IN COMPENSATORY EYE-MOVEMENTS AFTER UNILATERAL LABYRINTHECTOMY IN RABBIT [J].
BAARSMA, EA ;
COLLEWIJN, H .
ARCHIVES OF OTO-RHINO-LARYNGOLOGY, 1975, 211 (04) :219-230
[5]   THE VESTIBULAR NERVE OF THE CHINCHILLA .2. RELATION BETWEEN AFFERENT RESPONSE PROPERTIES AND PERIPHERAL INNERVATION PATTERNS IN THE SEMICIRCULAR CANALS [J].
BAIRD, RA ;
DESMADRYL, G ;
FERNANDEZ, C ;
GOLDBERG, JM .
JOURNAL OF NEUROPHYSIOLOGY, 1988, 60 (01) :182-203
[6]  
BIERER J, 2002, NEUROPHYSIOLOGICAL E
[7]  
Carenbauer AL, 2002, BMC BIOCHEM, V3
[8]  
Carey JP, 2005, CUMMINGS OTOLARYNGOL, P3115, DOI DOI 10.1016/B978-0-323-05283-2.00164-6
[9]  
Clark G., 2003, AIP SER MOD AC SIG
[10]  
COHEN B, 1963, Trans Am Neurol Assoc, V88, P200