An Intelligent System on Computer-Aided Diagnosis for Parkinson's Disease with MRI Using Machine Learning

被引:1
作者
Naren, J. [1 ]
Ramalingam, Praveena [1 ]
Rajeswari, U. Raja [1 ]
Vijayalakshmi, P. [1 ]
Vithya, G. [2 ]
机构
[1] SASTRA Deemed Univ, Thanjavur, Tamil Nadu, India
[2] KL Univ, Vijayawada, AP, India
来源
BIOLOGICALLY INSPIRED TECHNIQUES IN MANY-CRITERIA DECISION MAKING | 2020年 / 10卷
关键词
Parkinson's disease; Machine learning; MRI; CLASSIFICATION; PREDICTION; GENE;
D O I
10.1007/978-3-030-39033-4_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parkinson's disease (PD), an intensifying neurological disorder is predominantly because of failing dopaminergic neurons of the midbrain. Dopamine is involved in sending of messages to those parts that controls coordination and movement in brain. With the help of Machine Learning approaches, it sets a base for an Intelligent system that helps in computer-aided diagnosis of PD patients. Machine Learning is used for early diagnosis and prediction so that it can be utilized to treat the disease quicker. In medicinal science, it is visible that outputs from the imaging devices can be incorporated for predicting a disease better. The paper specifies a brief synopsis of Machine Learning techniques along with MRI data which can yield faster prediction of PD.
引用
收藏
页码:159 / 165
页数:7
相关论文
共 19 条
[1]  
Breiman L., 1984, CLASSIFICATION REGRE, DOI [10.1201/9781315139470, DOI 10.1201/9781315139470]
[2]   The significance of GBA for Parkinson's disease [J].
Brockmann, Kathrin ;
Berg, Daniela .
JOURNAL OF INHERITED METABOLIC DISEASE, 2014, 37 (04) :643-648
[3]   Deep learning for freezing of gait detection in Parkinson's disease patients in their homes using a waist-worn inertial measurement unit [J].
Camps, Julia ;
Sama, Albert ;
Martin, Mario ;
Rodriguez-Martin, Daniel ;
Perez-Lopez, Carlos ;
Moreno Arostegui, Joan M. ;
Cabestany, Joan ;
Catala, Andreu ;
Alcaine, Sheila ;
Mestre, Berta ;
Prats, Anna ;
Crespo-Maraver, Maria C. ;
Counihan, Timothy J. ;
Browne, Patrick ;
Quinlan, Leo R. ;
Laighin, Gearoid O. ;
Sweeney, Dean ;
Lewy, Hadas ;
Vainstein, Gabriel ;
Costa, Alberto ;
Annicchiarico, Roberta ;
Bayes, Angels ;
Rodriguez-Molinero, Alejandro .
KNOWLEDGE-BASED SYSTEMS, 2018, 139 :119-131
[4]  
Castrioto Anna, 2013, Handb Clin Neurol, V116, P129, DOI 10.1016/B978-0-444-53497-2.00011-5
[5]  
Challa K.N.R., 2016, An improved approach for prediction of Parkinson's disease using machine learning techniques
[6]   Performance analysis of different classification algorithms using different feature selection methods on Parkinson's disease detection [J].
Cigdem, Ozkan ;
Demirel, Hasan .
JOURNAL OF NEUROSCIENCE METHODS, 2018, 309 :81-90
[7]   Model-based and Model-free Machine Learning Techniques for Diagnostic Prediction and Classification of Clinical Outcomes in Parkinson's Disease [J].
Gao, Chao ;
Sun, Hanbo ;
Wang, Tuo ;
Tang, Ming ;
Bohnen, Nicolaas I. ;
Muller, Martijn L. T. M. ;
Herman, Talia ;
Giladi, Nir ;
Kalinin, Alexandr ;
Spino, Cathie ;
Dauer, William ;
Hausdorff, Jeffrey M. ;
Dinov, Ivo D. .
SCIENTIFIC REPORTS, 2018, 8
[8]  
Halawani S.M., 2012, ENSEMBLEMETHODS PRED
[9]  
Ho TK, 1998, IEEE T PATTERN ANAL, V20, P832, DOI 10.1109/34.709601
[10]   Feature selection and classification systems for chronic disease prediction: A review [J].
Jain, Divya ;
Singh, Vijendra .
EGYPTIAN INFORMATICS JOURNAL, 2018, 19 (03) :179-189