64-Bit and 128-bit DX random number generators

被引:2
作者
Deng, Lih-Yuan [2 ]
Lu, Henry Horng-Shing [1 ]
Chen, Tai-Been [3 ]
机构
[1] Natl Chiao Tung Univ, Inst Stat, Hsinchu 30010, Taiwan
[2] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
[3] I Shou Univ, Dept Med Imaging & Radiol Sci, Kaohsiung 82445, Taiwan
关键词
Combined generators; Empirical tests; Equidistribution; Linear congruential generator (LCG); Multiple recursive generator (MRG); MT19937;
D O I
10.1007/s00607-010-0097-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Extending 32-bit DX generators introduced by Deng and Xu (ACM Trans Model Comput Simul 13:299-309, 2003), we perform an extensive computer search for classes of 64-bit and 128-bit DX generators of large orders. The period lengths of these high resolution DX generators are ranging from 10(1915) to 10(58221). The software implementation of these generators can be developed for 64-bit or 128-bit hardware. The great empirical performances of DX generators have been confirmed by an extensive battery of tests in the TestU01 package. These high resolution DX generators can be useful to perform large scale simulations in scientific investigations for various computer systems.
引用
收藏
页码:27 / 43
页数:17
相关论文
共 34 条
[1]  
[Anonymous], 2002, FACTORIZATIONS BN 1
[2]  
Crandall Richard., 2000, Prime Numbers. A Computational Perspective
[3]   AVERAGE-CASE ERROR-ESTIMATES FOR THE STRONG PROBABLE PRIME TEST [J].
DAMGARD, I ;
LANDROCK, P ;
POMERANCE, C .
MATHEMATICS OF COMPUTATION, 1993, 61 (203) :177-194
[4]  
Deng L.-Y., 2005, ACM Transactions on Modeling and Computer Simulation, V15, P1, DOI 10.1145/1044322.1044323
[5]  
Deng L.-Y., 2003, ACM Transactions on Modeling and Computer Simulation, V13, P299, DOI 10.1145/945511.945513
[6]   GENERATION OF UNIFORM VARIATES FROM SEVERAL NEARLY UNIFORMLY DISTRIBUTED VARIABLES [J].
DENG, LY ;
GEORGE, EO .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1990, 19 (01) :145-154
[7]  
Deng LY, 1997, STAT SINICA, V7, P993
[8]   Random number generation for the new century [J].
Deng, LY ;
Lin, DKJ .
AMERICAN STATISTICIAN, 2000, 54 (02) :145-150
[9]  
Deng LY, 2004, MONTE CARLO AND QUASI-MONTE CARLO METHODS 2002, P167
[10]  
Doornik JA, 2007, ACM T MODEL COMPUT S, V17, DOI [10.1145/1189756.1189759, 10.1145/1177357.1177360]