Oscillons in the planar Ginzburg-Landau equation with 2: 1 forcing

被引:10
作者
McQuighan, Kelly [1 ]
Sandstede, Bjoern [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
关键词
localized radial structures; geometric blow-up; complex Ginzburg-Landau equation; spatial dynamics; oscillons; PATTERN-FORMATION; RADIAL SOLUTIONS; GRANULAR LAYERS; MODEL; WAVES; BIFURCATION; STRIPES; SYSTEM; STATES;
D O I
10.1088/0951-7715/27/12/3073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Oscillons are spatially localized, time-periodic structures that have been observed in many natural processes, often under temporally periodic forcing. Near Hopf bifurcations, such systems can be formally reduced to forced complex Ginzburg-Landau equations, with oscillons then corresponding to stationary localized patterns. In this manuscript, stationary localized structures of the planar 2 : 1 forced Ginzburg-Landau equation are investigated analytically and numerically. The existence of these patterns is proved in regions where two spatial eigenvalues collide at zero. A numerical study complements these analytical results away from onset.
引用
收藏
页码:3073 / 3116
页数:44
相关论文
共 55 条
  • [11] Spectra of linearized operators for NLS solitary waves
    Chang, Shu-Ming
    Gustafson, Stephen
    Nakanishi, Kenji
    Tsai, Tai-Peng
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) : 1070 - 1111
  • [12] SMOOTH INVARIANT FOLIATIONS IN INFINITE DIMENSIONAL SPACES
    CHOW, SN
    LIN, XB
    LU, KN
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (02) : 266 - 291
  • [13] STRONG RESONANCES OF SPATIALLY DISTRIBUTED OSCILLATORS - A LABORATORY TO STUDY PATTERNS AND DEFECTS
    COULLET, P
    EMILSSON, K
    [J]. PHYSICA D, 1992, 61 (1-4): : 119 - 131
  • [14] Oscillon-type structures and their interaction in a Swift-Hohenberg model
    Crawford, C
    Riecke, H
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1999, 129 (1-2) : 83 - 92
  • [15] Localized States in a Model of Pattern Formation in a Vertically Vibrated Layer
    Dawes, J. H. P.
    Lilley, S.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (01): : 238 - 260
  • [16] Doedel E.J., 2012, TECHNICAL REPORT
  • [17] Dumortier F, 1996, MEM AM MATH SOC, V121, P1
  • [18] Continuum description of vibrated sand
    Eggers, J
    Riecke, H
    [J]. PHYSICAL REVIEW E, 1999, 59 (04) : 4476 - 4483
  • [19] NORMAL-FORM REDUCTION FOR TIME-PERIODICALLY DRIVEN DIFFERENTIAL-EQUATIONS
    ELPHICK, C
    IOOSS, G
    TIRAPEGUI, E
    [J]. PHYSICS LETTERS A, 1987, 120 (09) : 459 - 463
  • [20] Global solutions for 2D quadratic Schrodinger equations
    Germain, P.
    Masmoudi, N.
    Shatah, J.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (05): : 505 - 543