The Key Role of Support Surface Hydrogenation in the CH4 to CH3OH Selective Oxidation by a ZrO2-Supported Single-Atom Catalyst

被引:82
作者
Harrath, Karim [1 ,2 ]
Yu, Xiaohu [3 ,4 ]
Xiao, Hai [1 ,2 ]
Li, Jun [1 ,2 ,5 ]
机构
[1] Tsinghua Univ, Minist Educ, Dept Chem, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Minist Educ, Key Lab Organ Optoelect & Mol Engn, Beijing 100084, Peoples R China
[3] Shaanxi Univ Technol, Shaanxi Key Lab Catalysis, Hanzhong 723000, Peoples R China
[4] Shaanxi Univ Technol, Sch Chem & Environm Sci, Hanzhong 723000, Peoples R China
[5] Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
methane to methanol; selectivity; single-atom catalyst; support surface hydrogenation; density functional theory calculations; TOTAL-ENERGY CALCULATIONS; DIRECT CONVERSION; METHANE CONVERSION; OXIDE; ACTIVATION; DECOMPOSITION; ZEOLITE; ZSM-5; CORE;
D O I
10.1021/acscatal.9b02093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Direct conversion of methane to methanol has attracted much interest and yet remains a challenge. Here, we investigate the catalytic mechanisms for methane oxidation on the Rh single-atom catalyst (SAC) dispersed on zirconia support Rh-1/ZrO2 by first-principles calculations. We find that, by comparison with other metal SACs dispersed on ZrO2, the spontaneous dissociative adsorption of H2O2 on the Rh-1/ZrO2 surface is a key factor that initiates the active site and hydrogenates the surrounding oxide support surface. We further reveal that the hydrogenation of the oxide support surface plays a key role in suppressing the further production of CH3OOH and CO2. Additionally, we propose a non-noble-metal Fe-1/ZrO2 SAC as an active and selective catalyst for direct CH4 to CH3OH conversion, potentially performing better than the current best Rh-1/ZrO2 SAC. Our findings provide insights for the design of highly selective and efficient catalysts for direct CH4 to CH3OH conversion.
引用
收藏
页码:8903 / 8909
页数:13
相关论文
共 53 条
[1]   Direct methane conversion routes to chemicals and fuels [J].
Alvarez-Galvan, M. C. ;
Mota, N. ;
Ojeda, M. ;
Rojas, S. ;
Navarro, R. M. ;
Fierro, J. L. G. .
CATALYSIS TODAY, 2011, 171 (01) :15-23
[2]   Bioinspired Metal-Organic Framework Catalysts for Selective Methane Oxidation to Methanol [J].
Baek, Jayeon ;
Rungtaweevoranit, Bunyarat ;
Pei, Xiaokun ;
Park, Myeongkee ;
Fakra, Sirine C. ;
Liu, Yi-Sheng ;
Matheu, Roc ;
Alshmimri, Sultan A. ;
Alshehri, Saeed ;
Trickett, Christopher A. ;
Somorjai, Gabor A. ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (51) :18208-18216
[3]  
Basile A, 2013, METHANE ENV OCCURENC
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   ASPECTS OF METHANE CHEMISTRY [J].
CRABTREE, RH .
CHEMICAL REVIEWS, 1995, 95 (04) :987-1007
[6]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[7]   EFFECTS OF PRESSURE, 3RD BODIES, AND TEMPERATURE PROFILING ON THE NONCATALYTIC PARTIAL OXIDATION OF METHANE [J].
FENG, WY ;
KNOPF, FC ;
DOOLEY, KM .
ENERGY & FUELS, 1994, 8 (04) :815-822
[8]   Selective oxidation of methane by the bis(μ-oxo)dicopper core stabilized on ZSM-5 and mordenite zeolites [J].
Groothaert, MH ;
Smeets, PJ ;
Sels, BF ;
Jacobs, PA ;
Schoonheydt, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (05) :1394-1395
[9]   Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol [J].
Grundner, Sebastian ;
Markovits, Monica A. C. ;
Li, Guanna ;
Tromp, Moniek ;
Pidko, Evgeny A. ;
Hensen, Emiel J. M. ;
Jentys, Andreas ;
Sanchez-Sanchez, Maricruz ;
Lercher, Johannes A. .
NATURE COMMUNICATIONS, 2015, 6
[10]   A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives [J].
Henkelman, G ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (15) :7010-7022