Quantum Deep Learning for Steel Industry Computer Vision Quality Control

被引:5
|
作者
Villalba-Diez, Javier [1 ,2 ]
Ordieres-Mere, Joaquin [3 ]
Gonzalez-Marcos, Ana [4 ]
Larzabal, Aintzane Soto [5 ]
机构
[1] Hsch Heilbronn, Fak Management & Vertrieb, Campus Schwabisch Hall, D-74523 Schwabisch Hall, Germany
[2] Univ Politecn Madrid, Complex Syst Grp, Av Puerta Hierro 2, Madrid 28040, Spain
[3] Univ Politecn Madrid, Escuela Tecn Super Ingn Ind ETSII, Jose Gutierrez Abascal 2, Madrid 28006, Spain
[4] Univ La Rioja, Dept Mech Engn, San Jose Calasanz 31, Logrono 26004, Spain
[5] Sidenor Invest & Desarrollo SA, Barrio Ugarte S-N, Basauri 48970, Bizkaia, Spain
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 02期
关键词
Steel Descaler; Quality of Steel Billet; Quantum Deep Learning; Quantvolutional Neural Network; Deep Learning; Quality in Steel Industry; DEFECTS; CARBON;
D O I
10.1016/j.ifacol.2022.04.216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this paper is to explore the potential capabilities of quantum machine learning technology (a branch of quantum computing) when applied to surface quality supervision inside steel manufacturing processes where environmental conditions can affect the quality of images. Comparison with classical deep learning classification schema is performed. The application case, driven by the so-called quantvolutional configuration, shows a large potential of using this technology in this field, mainly because of the speed when using a physical quantum engine.
引用
收藏
页码:337 / 342
页数:6
相关论文
共 50 条
  • [41] Systematic Review of Emotion Detection with Computer Vision and Deep Learning
    Pereira, Rafael
    Mendes, Carla
    Ribeiro, Jose
    Ribeiro, Roberto
    Miragaia, Rolando
    Rodrigues, Nuno
    Costa, Nuno
    Pereira, Antonio
    SENSORS, 2024, 24 (11)
  • [42] A Computer Vision System for Iris Recognition Based on Deep Learning
    Arora, Shefali
    Bhatia, M. P. S.
    PROCEEDINGS OF THE 2018 IEEE 8TH INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC 2018), 2018, : 157 - 161
  • [43] Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
    Akhtar, Naveed
    Mian, Ajmal
    IEEE ACCESS, 2018, 6 : 14410 - 14430
  • [44] Survey on deep learning based computer vision for sonar imagery
    Steiniger, Yannik
    Kraus, Dieter
    Meisen, Tobias
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [45] FaultNet: Faulty Rail-Valves Detection using Deep Learning and Computer Vision
    Pahwa, Ramanpreet Singh
    Chao, Jin
    Paul, Jestine
    Li, Yiqun
    Nwe, Ma Tin Lay
    Xie, Shudong
    James, Ashish
    Ambikapathi, Arulmurugan
    Zeng, Zeng
    Chandrasekhar, Vijay Ramaseshan
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 559 - 566
  • [46] Computer vision assisted human computer interaction for logistics management using deep learning
    Abosuliman, Shougi Suliman
    Almagrabi, Alaa Omran
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 96 (96)
  • [47] On line detection of defective apples using computer vision system combined with deep learning methods
    Fan, Shuxiang
    Li, Jiangbo
    Zhang, Yunhe
    Tian, Xi
    Wang, Qingyan
    He, Xin
    Zhang, Chi
    Huang, Wenqian
    JOURNAL OF FOOD ENGINEERING, 2020, 286
  • [48] Development of residual learning in deep neural networks for computer vision: A survey
    Xu, Guoping
    Wang, Xiaxia
    Wu, Xinglong
    Leng, Xuesong
    Xu, Yongchao
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 142
  • [49] Computer Vision and Deep Learning Tools for the Automatic Processing of Wasan Documents
    Diez, Yago
    Suzuki, Toya
    Vila, Marius
    Waki, Katsushi
    ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 757 - 765
  • [50] Automatic trait estimation in floriculture using computer vision and deep learning
    Afonso, Manya
    Paulo, Maria-Joao
    Fonteijn, Hubert
    van den Helder, Mary
    Zwinkels, Henk
    Rijsbergen, Marcel
    van Hameren, Gerard
    Haegens, Raoul
    Wehrens, Ron
    SMART AGRICULTURAL TECHNOLOGY, 2024, 7