Quantum Deep Learning for Steel Industry Computer Vision Quality Control

被引:5
|
作者
Villalba-Diez, Javier [1 ,2 ]
Ordieres-Mere, Joaquin [3 ]
Gonzalez-Marcos, Ana [4 ]
Larzabal, Aintzane Soto [5 ]
机构
[1] Hsch Heilbronn, Fak Management & Vertrieb, Campus Schwabisch Hall, D-74523 Schwabisch Hall, Germany
[2] Univ Politecn Madrid, Complex Syst Grp, Av Puerta Hierro 2, Madrid 28040, Spain
[3] Univ Politecn Madrid, Escuela Tecn Super Ingn Ind ETSII, Jose Gutierrez Abascal 2, Madrid 28006, Spain
[4] Univ La Rioja, Dept Mech Engn, San Jose Calasanz 31, Logrono 26004, Spain
[5] Sidenor Invest & Desarrollo SA, Barrio Ugarte S-N, Basauri 48970, Bizkaia, Spain
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 02期
关键词
Steel Descaler; Quality of Steel Billet; Quantum Deep Learning; Quantvolutional Neural Network; Deep Learning; Quality in Steel Industry; DEFECTS; CARBON;
D O I
10.1016/j.ifacol.2022.04.216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this paper is to explore the potential capabilities of quantum machine learning technology (a branch of quantum computing) when applied to surface quality supervision inside steel manufacturing processes where environmental conditions can affect the quality of images. Comparison with classical deep learning classification schema is performed. The application case, driven by the so-called quantvolutional configuration, shows a large potential of using this technology in this field, mainly because of the speed when using a physical quantum engine.
引用
收藏
页码:337 / 342
页数:6
相关论文
共 50 条
  • [21] Deep reinforcement learning in computer vision: a comprehensive survey
    Le, Ngan
    Rathour, Vidhiwar Singh
    Yamazaki, Kashu
    Luu, Khoa
    Savvides, Marios
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (04) : 2733 - 2819
  • [22] Advances in solar forecasting: Computer vision with deep learning
    Paletta, Quentin
    Terren-Serrano, Guillermo
    Nie, Yuhao
    Li, Binghui
    Bieker, Jacob
    Zhang, Wenqi
    Dubus, Laurent
    Dev, Soumyabrata
    Feng, Cong
    ADVANCES IN APPLIED ENERGY, 2023, 11
  • [23] Application of Deep Learning to Computer Vision: A Comprehensive Study
    Islam, S. M. Sofiqul
    Rahman, Shanto
    Rahman, Md. Mostafijur
    Dey, Emon Kumar
    Shoyaib, Mohammad
    2016 5TH INTERNATIONAL CONFERENCE ON INFORMATICS, ELECTRONICS AND VISION (ICIEV), 2016, : 592 - 597
  • [24] Computer vision with deep learning for ship draft reading
    Wang, Bangping
    Liu, Zhiming
    Wang, Haoran
    OPTICAL ENGINEERING, 2021, 60 (02)
  • [25] Deep Learning vs. Traditional Computer Vision
    O'Mahony, Niall
    Campbell, Sean
    Carvalho, Anderson
    Harapanahalli, Suman
    Hernandez, Gustavo Velasco
    Krpalkova, Lenka
    Riordan, Daniel
    Walsh, Joseph
    ADVANCES IN COMPUTER VISION, CVC, VOL 1, 2020, 943 : 128 - 144
  • [26] Improving landslide prediction by computer vision and deep learning
    Guerrero-Rodriguez, Byron
    Garcia-Rodriguez, Jose
    Salvador, Jaime
    Mejia-Escobar, Christian
    Cadena, Shirley
    Cepeda, Jairo
    Benavent-Lledo, Manuel
    Mulero-Perez, David
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2024, 31 (01) : 77 - 94
  • [27] Deep reinforcement learning in computer vision: a comprehensive survey
    Ngan Le
    Vidhiwar Singh Rathour
    Kashu Yamazaki
    Khoa Luu
    Marios Savvides
    Artificial Intelligence Review, 2022, 55 : 2733 - 2819
  • [28] Deep Active Learning for Computer Vision: Past and Future
    Takezoe, Rinyoichi
    Liu, Xu
    Mao, Shunan
    Chen, Marco Tianyu
    Feng, Zhanpeng
    Zhang, Shiliang
    Wang, Xiaoyu
    APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING, 2023, 12 (01)
  • [29] Smart attendance using deep learning and computer vision
    Seelam, Vivek
    Penugonda, Akhil Kumar
    Kalyan, B. Pavan
    Priya, M. Bindu
    Prakash, M. Durga
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 4091 - 4094
  • [30] Deep Learning and Computer Vision: Guidelines and Special Issues
    Grewe, Lynne
    Stevenson, Garrett
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVII, 2018, 10646