Quantum Deep Learning for Steel Industry Computer Vision Quality Control

被引:5
|
作者
Villalba-Diez, Javier [1 ,2 ]
Ordieres-Mere, Joaquin [3 ]
Gonzalez-Marcos, Ana [4 ]
Larzabal, Aintzane Soto [5 ]
机构
[1] Hsch Heilbronn, Fak Management & Vertrieb, Campus Schwabisch Hall, D-74523 Schwabisch Hall, Germany
[2] Univ Politecn Madrid, Complex Syst Grp, Av Puerta Hierro 2, Madrid 28040, Spain
[3] Univ Politecn Madrid, Escuela Tecn Super Ingn Ind ETSII, Jose Gutierrez Abascal 2, Madrid 28006, Spain
[4] Univ La Rioja, Dept Mech Engn, San Jose Calasanz 31, Logrono 26004, Spain
[5] Sidenor Invest & Desarrollo SA, Barrio Ugarte S-N, Basauri 48970, Bizkaia, Spain
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 02期
关键词
Steel Descaler; Quality of Steel Billet; Quantum Deep Learning; Quantvolutional Neural Network; Deep Learning; Quality in Steel Industry; DEFECTS; CARBON;
D O I
10.1016/j.ifacol.2022.04.216
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this paper is to explore the potential capabilities of quantum machine learning technology (a branch of quantum computing) when applied to surface quality supervision inside steel manufacturing processes where environmental conditions can affect the quality of images. Comparison with classical deep learning classification schema is performed. The application case, driven by the so-called quantvolutional configuration, shows a large potential of using this technology in this field, mainly because of the speed when using a physical quantum engine.
引用
收藏
页码:337 / 342
页数:6
相关论文
共 50 条
  • [1] Deep Learning for Industrial Computer Vision Quality Control in the Printing Industry 4.0
    Villalba-Diez, Javier
    Schmidt, Daniel
    Gevers, Roman
    Ordieres-Mere, Joaquin
    Buchwitz, Martin
    Wellbrock, Wanja
    SENSORS, 2019, 19 (18)
  • [2] Varietal quality control in the nursery plant industry using computer vision and deep learning techniques
    Borraz-Martinez, Sergio
    Tarres, Francesc
    Boque, Ricard
    Mestre, Mariangela
    Simo, Joan
    Gras, Anna
    JOURNAL OF CHEMOMETRICS, 2022, 36 (02)
  • [3] Deep Learning and Computer Vision Techniques for Enhanced Quality Control in Manufacturing Processes
    Raisul Islam, Md
    Zakir Hossain Zamil, Md
    Eshmam Rayed, Md
    Mohsin Kabir, Md
    Mridha, M. F.
    Nishimura, Satoshi
    Shin, Jungpil
    IEEE ACCESS, 2024, 12 : 121449 - 121479
  • [4] Investigation of steel frame damage based on computer vision and deep learning
    Kim, Bubryur
    Yuvaraj, N.
    Park, Hee Won
    Preethaa, K. R. Sri
    Pandian, R. Arun
    Lee, Dong-Eun
    AUTOMATION IN CONSTRUCTION, 2021, 132
  • [5] Computer Vision System with Deep Learning for Robotic Arm Control
    Melo, R. T.
    de Araujo, T. P.
    Saraiva, A. A.
    Sousa, J. V. M.
    Fonseca Ferrreira, N. M.
    15TH LATIN AMERICAN ROBOTICS SYMPOSIUM 6TH BRAZILIAN ROBOTICS SYMPOSIUM 9TH WORKSHOP ON ROBOTICS IN EDUCATION (LARS/SBR/WRE 2018), 2018, : 357 - 362
  • [6] Computer Vision for Safety Management in the Steel Industry
    Lan, Roy
    Awolusi, Ibukun
    Cai, Jiannan
    AI, 2024, 5 (03) : 1192 - 1215
  • [7] Deep Learning for Assistive Computer Vision
    Leo, Marco
    Furnari, Antonino
    Medioni, Gerard G.
    Trivedi, Mohan
    Farinella, Giovanni M.
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT VI, 2019, 11134 : 3 - 14
  • [8] Intelligent surface roughness measurement using deep learning and computer vision: a promising approach for manufacturing quality control
    Mohamed EL Ghadoui
    Ahmed Mouchtachi
    Radouane Majdoul
    The International Journal of Advanced Manufacturing Technology, 2023, 129 : 3261 - 3268
  • [9] Intelligent surface roughness measurement using deep learning and computer vision: a promising approach for manufacturing quality control
    EL Ghadoui, Mohamed
    Mouchtachi, Ahmed
    Majdoul, Radouane
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 129 (7-8) : 3261 - 3268
  • [10] Utilizing deep learning via computer vision for agricultural production quality control: jackfruit growth stage identification
    Krishnan, Sreedeep
    Karuppasamypandiyan, M.
    Chandran, Ranjeesh R.
    Devaraj, D.
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (03):