Mechanism of formation of subnanosecond current front in high-voltage pulse open discharge

被引:17
作者
Schweigert, I. V. [1 ,2 ]
Alexandrov, A. L. [1 ]
Zakrevsky, Dm. E. [3 ]
Bokhan, P. A. [3 ]
机构
[1] Khristianovich Inst Theoret & Appl Mech, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk 630090, Russia
[3] Rzhanov Inst Semicond Phys, Novosibirsk 630090, Russia
来源
PHYSICAL REVIEW E | 2014年 / 90卷 / 05期
基金
俄罗斯基础研究基金会;
关键词
ELECTRON-EMISSION; CROSS-SECTIONS; GROUND-STATE; IONIZATION; EXCITATION; SCATTERING; COLLISIONS; BREAKDOWN; SURFACE;
D O I
10.1103/PhysRevE.90.051101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The mechanism of subnanosecond current front rise observed previously in the experiment in high-voltage pulse open discharge in helium is studied in kinetic particle-in-cell simulations. The Boltzmann equations for electrons, ions, and fast atoms are solved self-consistently with the Poisson equations for the electrical potential. The partial contributions to the secondary electron emission from the ions, fast atoms, photons, and electrons, bombarding the electrode, are calculated. In simulations, as in the experiment, the discharge glows between two symmetrical cathodes and the anode grid in the midplane at P = 6 Torr and the applied voltage of 20 kV. The electron avalanche development is considered for two experimental situations during the last stage of breakdown: (i) with constant voltage and (ii) with decreasing voltage. For case (i), the subnanosecond current front rise is set by photons from the collisional excitation transfer reactions. For the case (ii), the energetic electrons swamp the cathode during voltage drop and provide the secondary electron emission for the subnanosecond current rise, observed in the experiment.
引用
收藏
页数:4
相关论文
共 25 条
[1]   Comparisons of sets of electron-neutral scattering cross sections and swarm parameters in noble gases: II. Helium and neon [J].
Alves, L. L. ;
Bartschat, K. ;
Biagi, S. F. ;
Bordage, M. C. ;
Pitchford, L. C. ;
Ferreira, C. M. ;
Hagelaar, G. J. M. ;
Morgan, W. L. ;
Pancheshnyi, S. ;
Phelps, A. V. ;
Puech, V. ;
Zatsarinny, O. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (33)
[2]   Experimental and numerical investigation of two mechanisms underlying runaway electron beam formation [J].
Baksht, E. Kh. ;
Belomyttsev, S. Ya. ;
Burachenko, A. G. ;
Ryzhov, V. V. ;
Tarasenko, V. F. ;
Shklyaev, V. A. .
TECHNICAL PHYSICS, 2012, 57 (07) :998-1002
[3]   ELECTRON-EMISSION FROM CLEAN METAL-SURFACES INDUCED BY LOW-ENERGY LIGHT-IONS [J].
BARAGIOLA, RA ;
ALONSO, EV ;
FLORIO, AO .
PHYSICAL REVIEW B, 1979, 19 (01) :121-129
[4]   Surface condition and electron emission from cold cathodes in vacuum and in noble gas glow discharge [J].
Bokhan, P. A. ;
Zakrevsky, D. E. .
TECHNICAL PHYSICS, 2007, 52 (01) :104-112
[5]   Switching of pulses with a power of 500 MW and subnanosecond rise front based on open discharge [J].
Bokhan, P. A. ;
Gugin, P. P. ;
Zakrevsky, Dm. E. ;
Lavrukhin, M. A. .
TECHNICAL PHYSICS LETTERS, 2013, 39 (09) :775-778
[6]   Noble-gas resonant radiation effects on electron emission in plasma devices [J].
Bokhan, P. A. ;
Zakrevsky, Dm. E. .
PHYSICAL REVIEW E, 2013, 88 (01)
[7]   ELASTIC AND INELASTIC SCATTERING OF LOW-VELOCITY HE+ IONS IN HELIUM [J].
CRAMER, WH ;
SIMONS, JH .
JOURNAL OF CHEMICAL PHYSICS, 1957, 26 (05) :1272-1275
[8]  
Dobretsov L. N., 1971, EMISSION ELECT
[9]   IONIZATION BY POSITIVE IONS [J].
GILBODY, HB ;
HASTED, JB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 240 (1222) :382-395
[10]   Heavy-particle hybrid simulation of a high-voltage glow discharge in helium [J].
Hartmann, P ;
Matsuo, H ;
Ohtsuka, Y ;
Fukao, A ;
Kando, M ;
Donkó, Z .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2003, 42 (6A) :3633-3640