High power 2.5D integrated thermoelectric generators combined with microchannels technology

被引:2
作者
Savelli, Guillaume [1 ]
Colonna, Jean-Philippe [2 ]
Coudrain, Perceval [2 ]
Faucherand, Pascal [1 ]
Royer, Agnes [2 ]
Collin, Louis-Michel [3 ]
Amnache, Amrid [3 ]
Frechette, Luc [3 ]
机构
[1] Univ Grenoble Alpes, CEA, Liten, DTNM, 17 Ave Martyrs, F-38000 Grenoble, France
[2] Univ Grenoble Alpes, CEA, Leti, DCOS, 17 Ave Martyrs, F-38000 Grenoble, France
[3] Univ Sherbrooke, LN2,Bld Univ 3000, Sherbrooke J1K OA5, PQ, Canada
基金
欧盟地平线“2020”;
关键词
Thermoelectric generators; Energy harvesting; SiGe; Microchannel; CMOS compatible;
D O I
10.1016/j.energy.2022.123984
中图分类号
O414.1 [热力学];
学科分类号
摘要
We have developed high power integrated thermoelectric generators (mu TEGs). These mu TEGs are CMOS compatible, i.e. based on polycristalline SiGe materials. These mu TEGs have been processed directly on a silicon interposer. Even if poly-SiGe exhibits low thermoelectric performances at room temperature, the specific design and proposed architecture enable mu TEGs to deliver up to 680 mu W for a temperature difference at 15.5 K. To reach such high power, an original 2.5D structure has been developed and mu channels technology has been associated, below the mu TEG, to dissipate heat coming from the hot side. mu TEGs have been tested in real environment, located below a hot test chip. Such mu TEG performances overtake those from similar state-of-the-art CMOS compatible devices, and pave the way for a potential use in different applications such as sensors power supply or battery charger. (c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 17 条
[1]   Multiple-Input Harvesting Power Management Unit With Enhanced Boosting Scheme for IoT Applications [J].
Abuellil, Amr ;
Estrada-Lopez, Johan J. ;
Bommireddipalli, Aditya ;
Costilla-Reyes, Alfredo ;
Zeng, Zizhen ;
Sanchez-Sinencio, Edgar .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (05) :3662-3672
[2]  
Bah T., 2019, THESIS
[3]   Micropelt miniaturized thermoelectric devices:: Small size, high cooling power densities, short response time [J].
Böttner, H .
ICT: 2005 24TH INTERNATIONAL CONFERENCE ON THERMOELECTRICS, 2005, :1-8
[4]  
Brunschwiler T., 2015, PROCEEDING ADVANCEME, P1
[5]   Integration of a Temporary Carrier in a TSV Process Flow [J].
Charbonnier, J. ;
Cheramy, S. ;
Henry, D. ;
Astier, A. ;
Brun, J. ;
Sillon, N. ;
Jouve, A. ;
Fowler, S. ;
Privett, M. ;
Puligadda, R. ;
Burggraf, J. ;
Pargfrieder, S. .
2009 IEEE 59TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE, VOLS 1-4, 2009, :865-+
[6]  
Colonna JP, 2017, 2017 23RD INTERNATIONAL WORKSHOP ON THERMAL INVESTIGATIONS OF ICS AND SYSTEMS (THERMINIC)
[7]   Planar Thermoelectric Microgenerators Based on Silicon Nanowires [J].
Davila, D. ;
Tarancon, A. ;
Kendig, D. ;
Fernandez-Regulez, M. ;
Sabate, N. ;
Salleras, M. ;
Calaza, C. ;
Cane, C. ;
Gracia, I. ;
Figueras, E. ;
Santander, J. ;
San Paulo, A. ;
Shakouri, A. ;
Fonseca, L. .
JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (05) :851-855
[8]   THERMAL + ELECTRICAL PROPERTIES OF HEAVILY DOPED GE-SI ALLOYS UP TO 1300 DEGREES K [J].
DISMUKES, JP ;
EKSTROM, E ;
BEERS, DS ;
STEIGMEIER, EF ;
KUDMAN, I .
JOURNAL OF APPLIED PHYSICS, 1964, 35 (10) :2899-&
[9]   Chip-Level Thermoelectric Power Generators Based on High-Density Silicon Nanowire Array Prepared With Top-Down CMOS Technology [J].
Li, Y. ;
Buddharaju, K. ;
Singh, N. ;
Lo, G. Q. ;
Lee, S. J. .
IEEE ELECTRON DEVICE LETTERS, 2011, 32 (05) :674-676
[10]   Micropower thermoelectric generator from thin Si membranes [J].
Perez-Marin, A. P. ;
Lopeandia, A. F. ;
Abad, Ll. ;
Ferrando-Villaba, P. ;
Garcia, G. ;
Lopez, A. M. ;
Munoz-Pascual, F. X. ;
Rodriguez-Viejo, J. .
NANO ENERGY, 2014, 4 :73-80