Scalable Hydrothermal Synthesis of Free-Standing VO2 Nanowires in the M1 Phase

被引:51
作者
Horrocks, Gregory A. [1 ]
Singh, Sujay [2 ]
Likely, Maliek F. [3 ]
Sambandamurthy, G. [2 ]
Banerjee, Sarbajit [1 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA
[2] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
基金
美国国家科学基金会;
关键词
devices; hydrothermal synthesis; metal-insulator transitions; nanowires; Raman spectroscopy; vanadium oxide; METAL-INSULATOR-TRANSITION; VANADIUM; ORGANIZATION; TEMPERATURE; DOMAINS; FILM;
D O I
10.1021/am504372t
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
VO2 nanostructures derived from solution-phase methods are often plagued by broadened and relatively diminished metal-insulator transitions and adventitious doping due to imperfect control of stoichiometry. Here, we demonstrate a stepwise scalable hydrothermal and annealing route for obtaining VO2 nanowires exhibiting almost 4 orders of magnitude abrupt (within 1 degrees C) metal-insulator transitions. The prepared nanowires have been characterized across their structural and electronic phase transitions using single-nanowire Raman microprobe analysis, ensemble differential scanning calorimetry, and single-nanowire electrical transport measurements. The electrical band gap is determined to be 600 meV and is consistent with the optical band gap of VO2, and the narrowness of differential scanning calorimetry profiles indicates homogeneity of stoichiometry. The preparation of high-quality free-standing nanowires exhibiting pronounced metal-insulator transitions by a solution-phase process allows for scalability, further solution-phase processing, incorporation within nanocomposites, and integration onto arbitrary substrates.
引用
收藏
页码:15726 / 15732
页数:7
相关论文
共 58 条
[1]  
BERGLUND CN, 1969, PHYS REV, V185, P1022, DOI 10.1103/PhysRev.185.1022
[2]   Extended Mapping and Exploration of the Vanadium Dioxide Stress-Temperature Phase Diagram [J].
Cao, J. ;
Gu, Y. ;
Fan, W. ;
Chen, L. Q. ;
Ogletree, D. F. ;
Chen, K. ;
Tamura, N. ;
Kunz, M. ;
Barrett, C. ;
Seidel, J. ;
Wu, J. .
NANO LETTERS, 2010, 10 (07) :2667-2673
[3]  
Cao J, 2009, NAT NANOTECHNOL, V4, P732, DOI [10.1038/nnano.2009.266, 10.1038/NNANO.2009.266]
[4]   Vanadium oxide nanowire phase and orientation analyzed by Raman spectroscopy [J].
Chou, J. Y. ;
Lensch-Falk, J. L. ;
Hemesath, E. R. ;
Lauhon, L. J. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (03)
[5]   Controlled Reduction of Vanadium Oxide Nanoscrolls: Crystal Structure, Morphology, and Electrical Properties [J].
Corr, Serena A. ;
Grossman, Madeleine ;
Furman, Joshua D. ;
Melot, Brent C. ;
Cheetham, Anthony K. ;
Heier, Kevin R. ;
Seshadri, Ram .
CHEMISTRY OF MATERIALS, 2008, 20 (20) :6396-6404
[6]   Confocal Raman Microscopy across the Metal-Insulator Transition of Single Vanadium Dioxide Nanoparticles [J].
Donev, Eugenii U. ;
Lopez, Rene ;
Feldman, Leonard C. ;
Haglund, Richard F., Jr. .
NANO LETTERS, 2009, 9 (02) :702-706
[7]   Memory Metamaterials [J].
Driscoll, T. ;
Kim, Hyun-Tak ;
Chae, Byung-Gyu ;
Kim, Bong-Jun ;
Lee, Yong-Wook ;
Jokerst, N. Marie ;
Palit, S. ;
Smith, D. R. ;
Di Ventra, M. ;
Basov, D. N. .
SCIENCE, 2009, 325 (5947) :1518-1521
[8]   Current oscillations in vanadium dioxide: Evidence for electrically triggered percolation avalanches [J].
Driscoll, Tom ;
Quinn, Jack ;
Di Ventra, Massimiliano ;
Basov, Dimitri N. ;
Seo, Giwan ;
Lee, Yong-Wook ;
Kim, Hyun-Tak ;
Smith, David R. .
PHYSICAL REVIEW B, 2012, 86 (09)
[9]   VO2: A Novel View from Band Theory [J].
Eyert, V. .
PHYSICAL REVIEW LETTERS, 2011, 107 (01)
[10]  
Fan L. L., 2013, APPL PHYS LETT, V103