Original Dark solitons for the variable-coefficient nonlinear Schrödinger equation with an external potential

被引:0
作者
Cui, Yuqin [1 ]
Ma, Fenfen [1 ]
机构
[1] Yulin Univ, Sch Management, Yulin 719000, Peoples R China
来源
OPTIK | 2021年 / 240卷
关键词
Optical soliton; Variable coefficients; Schrodinger equation;
D O I
10.1016/j.ijleo.2021.166894
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The main attention of this work focus on finding solitary wave solutions for the variable coefficient nonlinear Schrodinger equation with an external potential. Here, we analytically derived bright soliton, dark soliton, periodic soliton as well as triangular soliton through the complete discrimination system. Particularly, the Cross-shaped and T-shaped dark soliton are demonstrated.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Dynamics of solitons and modulation instability in a (2+1)-dimensional coupled nonlinear Schrödinger equation [J].
Kumar, Vineesh ;
Patel, Arvind ;
Kumar, Monu .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 235 :95-113
[42]   Dynamics of the Infinite Discrete Nonlinear Schrödinger Equation [J].
Vuoksenmaa, Aleksis .
JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (12)
[43]   Norm inflation for the derivative nonlinear Schrödinger equation [J].
Wang, Yuzhao ;
Zine, Younes .
COMPTES RENDUS MATHEMATIQUE, 2024, 362
[44]   Explicit approximation for stochastic nonlinear Schrödinger equation [J].
Cui, Jianbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 419 :1-39
[45]   The Effects of Nonlinear Noise on the Fractional Schrödinger Equation [J].
Xie, Jin ;
Yang, Han ;
Li, Dingshi ;
Ming, Sen .
FRACTAL AND FRACTIONAL, 2024, 8 (01)
[46]   Shielding of breathers for the focusing nonlinear Schrödinger equation [J].
Falqui, Gregorio ;
Grava, Tamara ;
Puntini, Christian .
PHYSICA D-NONLINEAR PHENOMENA, 2025, 481
[47]   The Effects of Impurities on Discrete Nonlinear Schrödinger Equation [J].
Samiun, Anis Sulaikha ;
Aklan, Nor Amirah Busul ;
Umarov, Bakhram .
MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2025, 21 (03) :1955-1964
[48]   Invariant tori for the fractional nonlinear Schrödinger equation with nonlinearity periodically depending on spatial variable [J].
Liu, Jieyu ;
Zhang, Jing .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (03) :1564-1610
[49]   Investigation of nonlinear dynamics in the stochastic nonlinear Schrödinger equation with spatial noise intensity [J].
Shakeel, Muhammad ;
Liu, Xinge ;
Abbas, Naseem .
NONLINEAR DYNAMICS, 2025, 113 (08) :8951-8971
[50]   Solitons moving on background waves of the focusing nonlinear Schrödinger equation with step-like initial condition [J].
Wang, Deng-Shan ;
Yu, Guo-Fu ;
Zhu, Dinghao .
PHYSICA D-NONLINEAR PHENOMENA, 2024, 470