Original Dark solitons for the variable-coefficient nonlinear Schrödinger equation with an external potential

被引:0
|
作者
Cui, Yuqin [1 ]
Ma, Fenfen [1 ]
机构
[1] Yulin Univ, Sch Management, Yulin 719000, Peoples R China
来源
OPTIK | 2021年 / 240卷
关键词
Optical soliton; Variable coefficients; Schrodinger equation;
D O I
10.1016/j.ijleo.2021.166894
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The main attention of this work focus on finding solitary wave solutions for the variable coefficient nonlinear Schrodinger equation with an external potential. Here, we analytically derived bright soliton, dark soliton, periodic soliton as well as triangular soliton through the complete discrimination system. Particularly, the Cross-shaped and T-shaped dark soliton are demonstrated.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] On optical solitons: the chiral nonlinear Schrödinger equation with perturbation and Bohm potential
    Muhammad Younis
    Nadia Cheemaa
    Syed A. Mahmood
    Syed T. R. Rizvi
    Optical and Quantum Electronics, 2016, 48
  • [42] Degenerate solitons in a generalized nonlinear Schrödinger equation
    Meng Wang
    Yan-Fei Yang
    Nonlinear Dynamics, 2024, 112 : 3763 - 3769
  • [43] Excitation of ring solitons and dromions in a non-isospectral nonlinear Schrödinger equation with tunable external potential
    Saravana Veni
    M. S. Mani Rajan
    Optical and Quantum Electronics, 2023, 55
  • [44] Dark soliton collisions for a fourth-order variable-coefficient nonlinear Schrödinger equation in an inhomogeneous Heisenberg ferromagnetic spin chain or alpha helical protein
    Xi-Yang Xie
    Bo Tian
    Jun Chai
    Xiao-Yu Wu
    Yan Jiang
    Nonlinear Dynamics, 2016, 86 : 131 - 135
  • [45] Solitonic interactions, Darboux transformation and double Wronskian solutions for a variable-coefficient derivative nonlinear Schrödinger equation in the inhomogeneous plasmas
    Lei Wang
    Yi-Tian Gao
    Zhi-Yuan Sun
    Feng-Hua Qi
    De-Xin Meng
    Guo-Dong Lin
    Nonlinear Dynamics, 2012, 67 : 713 - 722
  • [46] Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality
    Chao-Qing Dai
    Jiu Liu
    Yan Fan
    Ding-Guo Yu
    Nonlinear Dynamics, 2017, 88 : 1373 - 1383
  • [47] Computational Soliton solutions for the variable coefficient nonlinear Schrödinger equation by collective variable method
    Nauman Raza
    Zara Hassan
    Aly Seadawy
    Optical and Quantum Electronics, 2021, 53
  • [48] New solitons and breather-like solutions to a (2+1)-dimensional coupled variable-coefficient Schrödinger equation in optical fibers
    Wang, Xingye
    Gao, Ben
    NONLINEAR DYNAMICS, 2024, 112 (19) : 17321 - 17343
  • [49] Symmetry of the Schrödinger Equation with Variable Potential
    Wilhelm Fushchych
    Zoya Symenoh
    Ivan Tsyfra
    Journal of Nonlinear Mathematical Physics, 1998, 5 : 13 - 22
  • [50] Dark Bound Solitons and Soliton Chains for the Higher-Order Nonlinear Schrödinger Equation
    Zhi-Yuan Sun
    Yi-Tian Gao
    Xiang-Hua Meng
    Xin Yu
    Ying Liu
    International Journal of Theoretical Physics, 2013, 52 : 689 - 698