Lifelong Learning for Human-Object Interaction Detection

被引:0
|
作者
Sun, Bo [1 ]
Lu, Sixu [2 ]
He, Jun [1 ]
Yu, Lejun [2 ]
机构
[1] Beijing Normal Univ, Sch Artificial Intelligence, Coll Educ Future, Beijing, Zhuhai, Peoples R China
[2] Beijing Normal Univ, Sch Artificial Intelligence, Beijing, Peoples R China
来源
2022 IEEE 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND NETWORKS (ICICN 2022) | 2022年
基金
中国国家自然科学基金;
关键词
human-object interaction detection; lifelong learning; contrastive learning; object detection; incremental learning;
D O I
10.1109/ICICN56848.2022.10006558
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human-Object Interaction (HOI) Detection is a critical task in scene understanding, which aims to detect the triplet<human, object, interaction> in images or videos. Existing methods solve this problem under a strong assumption that all triplets that are to be detected would be available during training stage. However, in real scene, new HOIs may be introduced continuously, which requires the trained model to have the ability to identify new classes without forgetting old ones. Due to the limitations of storage, computing resources and the privacy of data, it is impractical to train the model from scratch using old and new data every time. In this paper, we propose a new HOI detection task scenario called Lifelong Learning Human-Object Interaction Detection (LL-HOI) which is more natural than the existing closed-world one and solve this problem in an incremental and contrastive learning manner (Fig. 1). Our method is composed of two stages according to under incremental setting or not: 1) identify humans, objects and actions in HOIs using backbone detector and contrastive learning and 2) incrementally learn new HOI classes without forgetting previously learned ones. Besides, to address the catastrophic forgetting problem, we propose a Feature Replay Network (FRN) based on contrastive learning to adaptively process the images conditioned on the incremental process. Extensive experiments on HICO-DET and HOI-W datasets demonstrate the effectiveness and superiority of our method on lifelong human-object interaction detection.
引用
收藏
页码:582 / 587
页数:6
相关论文
共 50 条
  • [31] Human-Object Interaction Detection via Disentangled Transformer
    Zhou, Desen
    Liu, Zhichao
    Wang, Jian
    Wang, Leshan
    Hu, Tao
    Ding, Errui
    Wang, Jingdong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19546 - 19555
  • [32] Spatial-Net for Human-Object Interaction Detection
    Mansour, Ahmed E.
    Mohammed, Ammar
    Elsayed, Hussein Abd El Atty
    Elramly, Salwa
    IEEE Access, 2022, 10 : 88920 - 88931
  • [33] Reimagining Violent Action Detection with Human-Object Interaction
    Baskaran, Vishnu Monn
    Sutopo, Ricky
    Lim, JunYi
    Lim, Joanne Mun-Yee
    Wong, KokSheik
    2024 IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, AVSS 2024, 2024,
  • [34] Human-Object Interaction Detection with Ratio-Transformer
    Wang, Tianlang
    Lu, Tao
    Fang, Wenhua
    Zhang, Yanduo
    SYMMETRY-BASEL, 2022, 14 (08):
  • [35] Semantic Inference Network for Human-Object Interaction Detection
    Liu, Hongyi
    Mo, Lisha
    Ma, Huimin
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 518 - 529
  • [36] Geometric Features Enhanced Human-Object Interaction Detection
    Zhu, Manli
    Ho, Edmond S. L.
    Chen, Shuang
    Yang, Longzhi
    Shum, Hubert P. H.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 1
  • [37] Hierarchical Reasoning Network for Human-Object Interaction Detection
    Gao, Yiming
    Kuang, Zhanghui
    Li, Guanbin
    Zhang, Wayne
    Lin, Liang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 8306 - 8317
  • [38] Transferable Interactiveness Knowledge for Human-Object Interaction Detection
    Li, Yong-Lu
    Liu, Xinpeng
    Wu, Xiaoqian
    Huang, Xijie
    Xu, Liang
    Lu, Cewu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3870 - 3882
  • [39] Weakly-supervised Human-object Interaction Detection
    Sugimoto, Masaki
    Furuta, Ryosuke
    Taniguchi, Yukinobu
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 5: VISAPP, 2021, : 293 - 300
  • [40] Exploiting Scene Graphs for Human-Object Interaction Detection
    He, Tao
    Gao, Lianli
    Song, Jingkuan
    Li, Yuan-Fang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15964 - 15973