Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics

被引:660
作者
Xiao, T
Takagi, J
Coller, BS
Wang, JH
Springer, TA
机构
[1] Harvard Univ, Sch Med, CBR Inst Biomed Res, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[3] Rockefeller Univ, Lab Blood & Vasc Biol, New York, NY 10021 USA
[4] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Dept Pediat, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1038/nature02976
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Integrins are important adhesion receptors in all Metazoa that transmit conformational change bidirectionally across the membrane. Integrin alpha and beta subunits form a head and two long legs in the ectodomain and span the membrane. Here, we define with crystal structures the atomic basis for allosteric regulation of the conformation and affinity for ligand of the integrin ectodomain, and how fibrinogen- mimetic therapeutics bind to platelet integrin alpha(IIb)beta(3). Allostery in the beta(3)I domain alters three metal binding sites, associated loops and alpha1- and alpha7-helices. Piston-like displacement of the alpha7-helix causes a 62degrees reorientation between the beta(3)I and hybrid domains. Transmission through the rigidly connected plexin/semaphorin/integrin ( PSI) domain in the upper beta(3) leg causes a 70 Angstrom separation between the knees of the alpha and beta legs. Allostery in the head thus disrupts interaction between the legs in a previously described low-affinity bent integrin conformation, and leg extension positions the high-affinity head far above the cell surface.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 51 条
[31]   Integrin activation involves a conformational change in the α1 helix of the β subunit A-domain [J].
Mould, AP ;
Askari, JA ;
Barton, S ;
Kline, AD ;
McEwan, PA ;
Craig, SE ;
Humphries, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (22) :19800-19805
[32]   THE HUMAN-PLATELET ALLOANTIGENS, PIA1 AND PIA2, ARE ASSOCIATED WITH A LEUCINE-33 PROLINE-33 AMINO-ACID POLYMORPHISM IN MEMBRANE GLYCOPROTEIN IIIA, AND ARE DISTINGUISHABLE BY DNA TYPING [J].
NEWMAN, PJ ;
DERBES, RS ;
ASTER, RH .
JOURNAL OF CLINICAL INVESTIGATION, 1989, 83 (05) :1778-1781
[33]   MECHANISMS OF COOPERATIVITY AND ALLOSTERIC REGULATION IN PROTEINS [J].
PERUTZ, MF .
QUARTERLY REVIEWS OF BIOPHYSICS, 1989, 22 (02) :139-236
[34]   Multiple discontinuous ligand-mimetic antibody binding sites define a ligand binding pocket in integrin αIIbβ3 [J].
Puzon-McLaughlin, W ;
Kamata, T ;
Takada, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (11) :7795-7802
[35]  
SCARBOROUGH RM, 1993, J BIOL CHEM, V268, P1066
[36]   Platelet glycoprotein IIb-IIIa antagonists as prototypical integrin blockers: Novel parenteral and potential oral antithrombotic agents [J].
Scarborough, RM ;
Gretler, DD .
JOURNAL OF MEDICINAL CHEMISTRY, 2000, 43 (19) :3453-3473
[37]   Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation [J].
Shimaoka, M ;
Xiao, T ;
Liu, JH ;
Yang, YT ;
Dong, YC ;
Jun, CD ;
McCormack, A ;
Zhang, RG ;
Joachimiak, A ;
Takagi, J ;
Wang, JH ;
Springer, TA .
CELL, 2003, 112 (01) :99-111
[38]   Predicted and experimental structures of integrins and β-propellers [J].
Springer, TA .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2002, 12 (06) :802-813
[39]  
SPRINGER TA, 2004, CELL SURFACE RECEPTO
[40]   Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling [J].
Takagi, J ;
Petre, BM ;
Walz, T ;
Springer, TA .
CELL, 2002, 110 (05) :599-611