Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics

被引:660
作者
Xiao, T
Takagi, J
Coller, BS
Wang, JH
Springer, TA
机构
[1] Harvard Univ, Sch Med, CBR Inst Biomed Res, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Pathol, Boston, MA 02115 USA
[3] Rockefeller Univ, Lab Blood & Vasc Biol, New York, NY 10021 USA
[4] Harvard Univ, Sch Med, Dana Farber Canc Inst, Boston, MA 02115 USA
[5] Harvard Univ, Sch Med, Dept Pediat, Boston, MA 02115 USA
[6] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1038/nature02976
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Integrins are important adhesion receptors in all Metazoa that transmit conformational change bidirectionally across the membrane. Integrin alpha and beta subunits form a head and two long legs in the ectodomain and span the membrane. Here, we define with crystal structures the atomic basis for allosteric regulation of the conformation and affinity for ligand of the integrin ectodomain, and how fibrinogen- mimetic therapeutics bind to platelet integrin alpha(IIb)beta(3). Allostery in the beta(3)I domain alters three metal binding sites, associated loops and alpha1- and alpha7-helices. Piston-like displacement of the alpha7-helix causes a 62degrees reorientation between the beta(3)I and hybrid domains. Transmission through the rigidly connected plexin/semaphorin/integrin ( PSI) domain in the upper beta(3) leg causes a 70 Angstrom separation between the knees of the alpha and beta legs. Allostery in the head thus disrupts interaction between the legs in a previously described low-affinity bent integrin conformation, and leg extension positions the high-affinity head far above the cell surface.
引用
收藏
页码:59 / 67
页数:9
相关论文
共 51 条
[1]   Three-dimensional model of the human platelet integrin αllbβ3 based on electron cryomicroscopy and x-ray crystallography [J].
Adair, BD ;
Yeager, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (22) :14059-14064
[2]  
ARTONI A, 2004, IN PRESS P NATL ACAD
[3]   Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation [J].
Beglova, N ;
Blacklow, SC ;
Takagi, J ;
Springer, TA .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (04) :282-287
[4]   Domains in plexins: links to integrins and transcription factors [J].
Bork, P ;
Doerks, T ;
Springer, TA ;
Snel, B .
TRENDS IN BIOCHEMICAL SCIENCES, 1999, 24 (07) :261-263
[5]   ASSIGNMENT OF DISULFIDE BONDS IN HUMAN PLATELET GPIIIA - A DISULFIDE PATTERN FOR THE BETA-SUBUNITS OF THE INTEGRIN FAMILY [J].
CALVETE, JJ ;
HENSCHEN, A ;
GONZALEZRODRIGUEZ, J .
BIOCHEMICAL JOURNAL, 1991, 274 :63-71
[6]   Ribbons [J].
Carson, M .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :493-505
[7]   Bistable regulation of integrin adhesiveness by a bipolar metal ion cluster [J].
Chen, JF ;
Salas, A ;
Springer, TA .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (12) :995-1001
[8]  
CHEN JF, IN PRESS J BIOL CHEM
[9]   Platelet GPIIb/IIIa antagonists: The first anti-integrin receptor therapeutics [J].
Coller, BS .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (07) :1467-1471
[10]   A MURINE MONOCLONAL-ANTIBODY THAT COMPLETELY BLOCKS THE BINDING OF FIBRINOGEN TO PLATELETS PRODUCES A THROMBASTHENIC-LIKE STATE IN NORMAL PLATELETS AND BINDS TO GLYCOPROTEINS-IIB AND OR GLYCOPROTEIN-IIIA [J].
COLLER, BS ;
PEERSCHKE, EI ;
SCUDDER, LE ;
SULLIVAN, CA .
JOURNAL OF CLINICAL INVESTIGATION, 1983, 72 (01) :325-338