Thermo-Hydraulic performance of printed circuit heat exchanger as precooler in supercritical CO2 Brayton cycle

被引:37
|
作者
Jin, Feng [1 ]
Chen, Deqi [1 ]
Hu, Lian [2 ]
Huang, Yanping [3 ]
Zeng, Hao [1 ]
Wang, Junfeng [3 ]
机构
[1] Chongqing Univ, Key Lab Low Grade Energy Utilizat Technol & Syst, Chongqing 400044, Peoples R China
[2] Chongqing Univ Sci & Technol, Coll Mech & Power Engn, Chongqing 400044, Peoples R China
[3] Nucl Power Inst China, CNNC Key Lab Nucl Reactor Thermal Hydraul Technol, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Printed circuit heat exchanger; Supercritical carbon dioxide; Heat transfer; Brayton cycle; Numerical simulation; THERMAL-HYDRAULIC PERFORMANCE; FINS; OPTIMIZATION; AIRFOIL; DESIGN; PCHE;
D O I
10.1016/j.applthermaleng.2022.118341
中图分类号
O414.1 [热力学];
学科分类号
摘要
The Printed Circuit Heat Exchanger (PCHE) is one of the potential precooler candidates to be employed in the supercritical carbon dioxide (S-CO2) Brayton cycle with its high compactness, high efficiency and high endurance to extreme condition. Since the S-CO2 precooler operates in the condition close to the pseudo-critical region, it is of importance understanding the performance differences among different types of PCHE with the dramatical change of thermal-physical properties. Thus, in this study the effect of three channel configurations with zigzag, wavy and airfoil fin channel on heat transfer and flow resistance under precooler condition are investigated with numerical method. Based on the local analysis, it is found that the zigzag channel PCHE presents the better heat transfer performance compared to wavy and airfoil fin channel, and differences are increased as the temperature approaches the pseudo-critical region. Meanwhile, the airfoil fin channel shows the lower friction factor with only 6.12% and 41.31% of the zigzag and wavy channel, respectively. Furthermore, comprehensive performances are compared through the methods of entropy number, JF factor (ratio of Colburn j to friction factor) and Q/(m.delta P) (ratio of heat exchange to pressure drop and mass flow). Based on the results, it is recommended for the airfoil channel to be adopted near the pseudo-critical region due to its larger surface area and smoother structural design.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications
    Meshram, Ajinkya
    Jaiswal, Ankush Kumar
    Khivsara, Sagar D.
    Ortega, Jesus D.
    Ho, Clifford
    Bapat, Rucha
    Dutta, Pradip
    APPLIED THERMAL ENGINEERING, 2016, 109 : 861 - 870
  • [22] Thermal-hydraulic analysis of sinusoidal fin-based printed circuit heat exchangers for supercritical CO2 Brayton cycle
    Saeed, Muhammad
    Kim, Man-Hoe
    ENERGY CONVERSION AND MANAGEMENT, 2019, 193 : 124 - 139
  • [23] THERMAL-HYDRAULIC PERFORMANCE OF DIFFERENT DISCONTINUOUS FINS USED IN A PRINTED CIRCUIT HEAT EXCHANGER FOR SUPERCRITICAL CO2
    Xu, X. Y.
    Wang, Q. W.
    Li, L.
    Ekkad, S. V.
    Ma, T.
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2015, 68 (10) : 1067 - 1086
  • [24] Numerical investigation on the Thermal-hydraulic performance of the modified channel supercritical CO2 printed circuit heat exchanger
    Wang, Jian
    Yan, Xin-ping
    Boersma, Bendiks J.
    Lu, Ming-jian
    Liu, Xiaohua
    APPLIED THERMAL ENGINEERING, 2023, 221
  • [25] Performance enhancement of a C-shaped printed circuit heat exchanger in supercritical CO2 Brayton cycle: A machine learning-based optimization study
    Saeed, Muhammad
    Berrouk, Abdallah S.
    Al Wahedi, Yasser F.
    Singh, Munendra Pal
    Abu Dagga, Ibragim
    Afgan, Imran
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 38
  • [26] PDF-based modeling on the turbulent convection heat transfer of supercritical CO2 in the printed circuit heat exchangers for the supercritical CO2 Brayton cycle
    Li, Hongzhi
    Zhang, Yifan
    Zhang, Lixin
    Yao, Mingyu
    Kruizenga, Alan
    Anderson, Mark
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 98 : 204 - 218
  • [27] Optimization of zigzag parameters in printed circuit heat exchanger for supercritical CO2 Brayton cycle based on multi-objective genetic algorithm
    Jin, Feng
    Chen, Deqi
    Hu, Lian
    Huang, Yanping
    Bu, Shanshan
    Energy Conversion and Management, 2022, 270
  • [28] Optimization of zigzag parameters in printed circuit heat exchanger for supercritical CO2 Brayton cycle based on multi-objective genetic algorithm
    Jin, Feng
    Chen, Deqi
    Hu, Lian
    Huang, Yanping
    Bu, Shanshan
    ENERGY CONVERSION AND MANAGEMENT, 2022, 270
  • [29] Effect of printed circuit heat exchanger's different designs on the performance of supercritical carbon dioxide Brayton cycle
    Saeed, Muhammed
    Berrouk, Abdallah S.
    Siddiqui, M. Salman
    Awais, Ahmad Ali
    APPLIED THERMAL ENGINEERING, 2020, 179
  • [30] Thermal and mechanical performance of a hybrid printed circuit heat exchanger used for supercritical carbon dioxide Brayton cycle
    Lian, Jie
    Xu, Dongjun
    Chang, Hongliang
    Xu, Zirui
    Lu, Xing
    Wang, Qiuwang
    Ma, Ting
    ENERGY CONVERSION AND MANAGEMENT, 2021, 245