Nonparametric bootstrap of sample means of positive-definite matrices with an application to diffusion-tensor-imaging data analysis

被引:4
作者
Ellingson, Leif [1 ]
Groisser, David [2 ]
Osborne, Daniel [3 ]
Patrangenaru, Vic [4 ]
Schwartzman, Armin [5 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[3] Florida A&M Univ, Dept Math, Tallahassee, FL USA
[4] Florida State Univ, Dept Stat, Tallahasee, FL USA
[5] North Carolina State Univ, Dept Stat, Raleigh, NC USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Center of mass; Diffusion tensor imaging; Extrinsic mean; Fast algorithms; Frechet mean; Intrinsic mean; Nonparametric bootstrap; CENTER-OF-MASS; MULTIVARIATE NORMALITY; DIRECTIONAL-DATA; SHAPE SPACES; STATISTICS; MANIFOLDS; GEOMETRY; MRI; IMAGES;
D O I
10.1080/03610918.2015.1136413
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents nonparametric two-sample bootstrap tests for means of random symmetric positive-definite (SPD) matrices according to two different metrics: the Frobenius (or Euclidean) metric, inherited from the embedding of the set of SPD metrics in the Euclidean set of symmetric matrices, and the canonical metric, which is defined without an embedding and suggests an intrinsic analysis. A fast algorithm is used to compute the bootstrap intrinsic means in the case of the latter. The methods are illustrated in a simulation study and applied to a two-group comparison of means of diffusion tensors (DTs) obtained from a single voxel of registered DT images of children in a dyslexia study.
引用
收藏
页码:4851 / 4879
页数:29
相关论文
共 48 条
[1]   ON THE CONVERGENCE OF GRADIENT DESCENT FOR FINDING THE RIEMANNIAN CENTER OF MASS [J].
Afsari, Bijan ;
Tron, Roberto ;
Vidal, Rene .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (03) :2230-2260
[2]   RIEMANNIAN Lp CENTER OF MASS: EXISTENCE, UNIQUENESS, AND CONVEXITY [J].
Afsari, Bijan .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (02) :655-673
[3]  
[Anonymous], 2006, THESIS
[4]   Geometric means in a novel vector space structure on symmetric positive-definite matrices [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) :328-347
[5]  
BABU G. J., 1984, Sankhya A, V46, P219
[6]   A normal distribution for tensor-valued random variables: Applications to diffusion tensor MRI [J].
Basser, PJ ;
Pajevic, S .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2003, 22 (07) :785-794
[7]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[8]   Large sample theory of intrinsic and extrinsic sample means on manifolds - II [J].
Bhattacharya, R ;
Patrangenaru, V .
ANNALS OF STATISTICS, 2005, 33 (03) :1225-1259
[9]  
Bhattacharya R, 2003, ANN STAT, V31, P1
[10]   Nonparametic estimation of location and dispersion on Riemannian manifolds [J].
Bhattacharya, R ;
Patrangenaru, V .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) :23-35