Deep Learn in for Screening COVID-19 using Chest X-Ray Images

被引:0
|
作者
Basu, Sanhita [1 ]
Mitra, Sushmita [2 ]
Saha, Nilanjan [3 ]
机构
[1] West Bengal State Univ, Dept Comp Sci, Kolkata 700126, W Bengal, India
[2] Indian Stat Inst, Machine Intelligence Unit, Kolkata 700108, India
[3] Jamia Hamdard, Ctr Translat & Clin Res, New Delhi 110062, India
关键词
COVID-19; Domain Extension Transfer Learning; Thoracic Imaging; Gradient Class Activation Map (Grad-CAM);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the ever increasing demand for screening millions of prospective "novel coronavirus" or COVID-19 cases, and due to the emergence of high false negatives in the commonly used PCR tests, the necessity for probing an alternative simple screening mechanism of COVID-19 using radiological images (like chest X-Rays) assumes importance. In this scenario, machine learning (ML) and deep learning (DL) offer fast, automated, effective strategies to detect abnormalities and extract key features of the altered lung parenchyma, which may he related to specific signatures of the COVID-19 virus. However, the available COVID-19 datasets are inadequate to train deep neural networks. Therefore, we propose a new concept called domain extension transfer learning (DETL). We employ DETL, with pre-trained deep convolutional neural network, on a related large chest XRay dataset that is tuned for classifying between four classes viz. normal, pneumonia, other_disease, and Covid - 19. A 5-fold cross validation is performed to estimate the feasibility of using chest X-Rays to diagnose COVID-19. The initial results show promise, with the possibility of replication on bigger and more diverse data sets. The overall accuracy was measured as 90.13% +/- 0.14. In order to get an idea about the COVID-19 detection transparency, we employed the concept of Gradient Class Activation Map (Grad-CAM) for detecting the regions where the model paid more attention during the classification. This was found to strongly correlate with clinical findings, as validated by experts.
引用
收藏
页码:2521 / 2527
页数:7
相关论文
共 50 条
  • [1] A deep learning approach for COVID-19 screening and localization on Chest X-Ray images
    Marcomini, Karem Daiane
    Cardona Cardenas, Diego Armando
    Machado Traina, Agma Juci
    Krieger, Jose Eduardo
    Gutierrez, Marco Antonio
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [2] Identification of COVID-19 with Chest X-ray Images using Deep Learning
    Khandar, Punam
    Thaokar, Chetana
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (05): : 694 - 700
  • [3] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [4] Identification of COVID-19 using chest X-Ray images
    Patnaik, Vijaya
    Mohanty, Monalisa
    Subudhi, Asit Kumar
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2023, 11 (06): : 2130 - 2144
  • [5] COVID-19 Screening in Chest X-Ray Images Using Lung Region Priors
    An, Jianpeng
    Cai, Qing
    Qu, Zhiyong
    Gao, Zhongke
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (11) : 4119 - 4127
  • [6] COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
    Saiz, Fatima A.
    Barandiaran, Inigo
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (02): : 11 - 14
  • [7] Y Covid-19 Classification Using Deep Learning in Chest X-Ray Images
    Karhan, Zehra
    Akal, Fuat
    2020 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2020,
  • [8] A Deep Learning Approach for Detecting Covid-19 Using the Chest X-Ray Images
    Sadeghi, Fatemeh
    Rostami, Omid
    Yi, Myung-Kyu
    Hwang, Seong Oun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 751 - 768
  • [9] COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
    Akter, Shamima
    Shamrat, F. M. Javed Mehedi
    Chakraborty, Sovon
    Karim, Asif
    Azam, Sami
    BIOLOGY-BASEL, 2021, 10 (11):
  • [10] Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images
    Sharmila, V. J.
    Florinabel, Jemi D.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021