Heteroepitaxial van der Waals semiconductor superlattices

被引:76
作者
Jin, Gangtae [1 ,2 ]
Lee, Chang-Soo [1 ,2 ]
Okello, Odongo F. N. [2 ]
Lee, Suk-Ho [1 ,2 ]
Park, Min Yeong [1 ,2 ]
Cha, Soonyoung [1 ]
Seo, Seung-Young [1 ,2 ]
Moon, Gunho [1 ,2 ]
Min, Seok Young [1 ,2 ]
Yang, Dong-Hwan [2 ]
Han, Cheolhee [1 ,2 ]
Ahn, Hyungju [3 ]
Lee, Jekwan [4 ]
Choi, Hyunyong [4 ]
Kim, Jonghwan [1 ,2 ]
Choi, Si-Young [2 ]
Jo, Moon-Ho [1 ,2 ]
机构
[1] Inst Basic Sci IBS, Ctr Artificial Low Dimens Elect Syst, Pohang, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang, South Korea
[3] Pohang Accelerator Lab, Pohang, South Korea
[4] Seoul Natl Univ, Dept Phys & Astron, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
LIGHT-EMITTING-DIODES; ELECTRONIC-PROPERTIES; SCALE; HETEROSTRUCTURES;
D O I
10.1038/s41565-021-00942-z
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal-organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides. A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS2, WS2 and WSe2. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal-organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations-one of the most distinctive electronic features in vdW ML semiconductors-which scale with the stack numbers n in our (MoS2/WS2)(n) SLs on optical excitations.
引用
收藏
页码:1092 / +
页数:8
相关论文
共 50 条
  • [21] Fabrication and characterization of PbSe nanostructures on van der Waals surfaces of GaSe layered semiconductor crystals
    Kudrynskyi, Z. R.
    Bakhtinov, A. P.
    Vodopyanov, V. N.
    Kovalyuk, Z. D.
    Tovarnitskii, M. V.
    Lytvyn, O. S.
    NANOTECHNOLOGY, 2015, 26 (46)
  • [22] Device physics of van der Waals heterojunction solar cells
    Furchi, Marco M.
    Hoeller, Florian
    Dobusch, Lukas
    Polyushkin, Dmitry K.
    Schuler, Simone
    Mueller, Thomas
    NPJ 2D MATERIALS AND APPLICATIONS, 2018, 2
  • [23] Modulation of silicene properties by AsSb with van der Waals interaction
    Jin, Cui
    Dai, Ying
    Wei, Wei
    Sun, Qilong
    Li, Xinru
    Huang, Baibiao
    RSC ADVANCES, 2017, 7 (10) : 5827 - 5835
  • [24] Hematene: a 2D magnetic material in van der Waals or non-van der Waals heterostructures
    Gonzalez, R. I.
    Mella, J.
    Diaz, P.
    Allende, S.
    Vogel, E. E.
    Cardenas, C.
    Munoz, F.
    2D MATERIALS, 2019, 6 (04)
  • [25] Supercurrent in van der Waals Josephson junction
    Yabuki, Naoto
    Moriya, Rai
    Arai, Miho
    Sata, Yohta
    Morikawa, Sei
    Masubuchi, Satoru
    Machida, Tomoki
    NATURE COMMUNICATIONS, 2016, 7
  • [26] Recent progress in van der Waals heterojunctions
    Xia, Wanshun
    Dai, Liping
    Yu, Peng
    Tong, Xin
    Song, Wenping
    Zhang, Guojun
    Wang, Zhiming
    NANOSCALE, 2017, 9 (13) : 4324 - 4365
  • [27] Morphotaxy of Layered van der Waals Materials
    Lam, David
    Lebedev, Dmitry
    Hersam, Mark C.
    ACS NANO, 2022, 16 (05) : 7144 - 7167
  • [28] Scanning tunneling spectroscopy of van der Waals graphene/semiconductor interfaces: absence of Fermi level pinning
    Le Quang, T.
    Cherkez, V.
    Nogajewski, K.
    Potemski, M.
    Dau, M. T.
    Jamet, M.
    Mallet, P.
    Veuillen, J-Y
    2D MATERIALS, 2017, 4 (03):
  • [29] Tuning the metal-semiconductor contact nature in MXene-based van der Waals heterostructures
    Wu, Yu-Han
    Luo, Jia-Cheng
    Zhang, Jing
    He, Zi-Cheng
    Lan, Yu
    Huang, Gui-Fang
    Hu, Wangyu
    Huang, Wei-Qing
    RESULTS IN PHYSICS, 2023, 54
  • [30] Antimony Chalcogenide van der Waals Nanostructures for Energy Conversion and Storage
    Gusmao, Rui
    Sofer, Zdenek
    Luxa, Jan
    Pumera, Martin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (18) : 15790 - 15798