Adaptive space-time BEM for the heat equation

被引:2
|
作者
Gantner, Gregor [1 ]
van Venetie, Raymond [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
基金
奥地利科学基金会;
关键词
Space-time boundary element method; Heat equation; A posteriori error estimation; Adaptive mesh-refinement; Computation of singular integrals; BOUNDARY-ELEMENT METHODS; ARONSZAJN-SLOBODECKIJ NORM; LOCALIZATION;
D O I
10.1016/j.camwa.2021.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the space-time boundary element method (BEM) for the heat equation with prescribed initial and Dirichlet data. We propose a residual-type a posteriorierror estimator that is a lower bound and, up to weighted. L-2-norms of the residual, also an upper bound for the unknown BEM error. The possibly locally refined meshes are assumed to be prismatic, i.e., their elements are tensor-products J x K of elements in time J and space K. While the results do not depend on the local aspect ratio between time and space, assuming the scaling vertical bar J vertical bar similar or equal to diam(K)(2) for all elements and using Galerkin BEM, the estimator is shown to be efficient and reliable without the additional L-2-terms. In the considered numerical experiments on two-dimensional domains in space, the estimator seems to be equivalent to the error, independently of these assumptions. In particular for adaptive anisotropic refinement, both converge with the best possible convergence rate.
引用
收藏
页码:117 / 131
页数:15
相关论文
共 50 条
  • [1] Adaptive space-time BEM for the heat equation
    Gantner, Gregor
    van Venetië, Raymond
    Computers and Mathematics with Applications, 2022, 107 : 117 - 131
  • [2] Sparse space-time Galerkin BEM for the nonstationary heat equation
    Chernov, Alexey
    Schwab, Christoph
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (6-7): : 403 - 413
  • [3] A Time-Adaptive Space-Time FMM for the Heat Equation
    Watschinger, Raphael
    Of, Guenther
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (02) : 445 - 471
  • [4] Space-time discretization of the heat equation
    Andreev, Roman
    NUMERICAL ALGORITHMS, 2014, 67 (04) : 713 - 731
  • [5] SPACE-TIME ESTIMATE TO HEAT EQUATION
    Wang Yidong
    Jiang Lingyu
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2007, 20 (03): : 247 - 251
  • [6] Space-time discretization of the heat equation
    Roman Andreev
    Numerical Algorithms, 2014, 67 : 713 - 731
  • [7] Asymptotic properties of the space-time adaptive numerical solution of a nonlinear heat equation
    Budd, Chris
    Koch, Othmar
    Taghizadeh, Leila
    Weinmueller, Ewa
    CALCOLO, 2018, 55 (04)
  • [8] On Space-Time Quasiconcave Solutions of the Heat Equation
    Chen, Chuanqiang
    Ma, Xinan
    Salani, Paolo
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 259 (1244) : 1 - +
  • [9] A space-time DPG method for the heat equation
    Diening, Lars
    Storn, Johannes
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 105 : 41 - 53
  • [10] SPACE-TIME VIRTUAL ELEMENTS FOR THE HEAT EQUATION
    Gomez, Sergio
    Mascotto, Lorenzo
    Moiola, Andrea
    Perugia, Ilaria
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (01) : 199 - 228