Adaptive space-time BEM for the heat equation

被引:2
作者
Gantner, Gregor [1 ]
van Venetie, Raymond [1 ]
机构
[1] Univ Amsterdam, Korteweg de Vries Inst Math, POB 94248, NL-1090 GE Amsterdam, Netherlands
基金
奥地利科学基金会;
关键词
Space-time boundary element method; Heat equation; A posteriori error estimation; Adaptive mesh-refinement; Computation of singular integrals; BOUNDARY-ELEMENT METHODS; ARONSZAJN-SLOBODECKIJ NORM; LOCALIZATION;
D O I
10.1016/j.camwa.2021.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the space-time boundary element method (BEM) for the heat equation with prescribed initial and Dirichlet data. We propose a residual-type a posteriorierror estimator that is a lower bound and, up to weighted. L-2-norms of the residual, also an upper bound for the unknown BEM error. The possibly locally refined meshes are assumed to be prismatic, i.e., their elements are tensor-products J x K of elements in time J and space K. While the results do not depend on the local aspect ratio between time and space, assuming the scaling vertical bar J vertical bar similar or equal to diam(K)(2) for all elements and using Galerkin BEM, the estimator is shown to be efficient and reliable without the additional L-2-terms. In the considered numerical experiments on two-dimensional domains in space, the estimator seems to be equivalent to the error, independently of these assumptions. In particular for adaptive anisotropic refinement, both converge with the best possible convergence rate.
引用
收藏
页码:117 / 131
页数:15
相关论文
共 25 条
  • [1] Arnold D. N., 1987, P 9 INT C BOUND EL M, V3, P213
  • [2] LOCAL INVERSE ESTIMATES FOR NON-LOCAL BOUNDARY INTEGRAL OPERATORS
    Aurada, M.
    Feischl, M.
    Fuhrer, T.
    Karkulik, M.
    Melenk, J. M.
    Praetorius, D.
    [J]. MATHEMATICS OF COMPUTATION, 2017, 86 (308) : 2651 - 2686
  • [3] Efficiency and Optimality of Some Weighted-Residual Error Estimator for Adaptive 2D Boundary Element Methods
    Aurada, Markus
    Feischl, Michael
    Fuehrer, Thomas
    Karkulik, Michael
    Praetorius, Dirk
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2013, 13 (03) : 305 - 332
  • [4] Sparse grid approximation spaces for space-time boundary integral formulations of the heat equation
    Chernov, Alexey
    Reinarz, Anne
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (11) : 3605 - 3619
  • [5] Sparse space-time Galerkin BEM for the nonstationary heat equation
    Chernov, Alexey
    Schwab, Christoph
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (6-7): : 403 - 413
  • [6] BOUNDARY INTEGRAL-OPERATORS FOR THE HEAT-EQUATION
    COSTABEL, M
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 1990, 13 (04) : 498 - 552
  • [7] Dohr S., 2019, THESIS TU GRAZ
  • [8] Space-time boundary element methods for the heat equation
    Dohr, Stefan
    Niino, Kazuki
    Steinbach, Olaf
    [J]. SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 : 1 - 60
  • [9] A parallel space-time boundary element method for the heat equation
    Dohr, Stefan
    Zapletal, Jan
    Of, Guenther
    Merta, Michal
    Kravcenko, Michal
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (09) : 2852 - 2866
  • [10] Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods. Part I. The two-dimensional case
    Faermann, B
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2000, 20 (02) : 203 - 234