Numerical solution to linear complementarity problems and the evaluation of American options

被引:0
作者
Denault, M
Pigeon, B
机构
[1] HEC Montreal & GERAD, Montreal, PQ H3P 1S3, Canada
[2] Financeiere Banque Natl, Montreal, PQ H3B 4S9, Canada
关键词
option pricing; American options; linear complementarity problem (LCP); pivoting; algorithms;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the Black-Scholes framework, the American option pricing problem can be discretized into a finite-dimensional linear complementarity problem. We compare the numerical performances of three algorithms for the linear complementarity problem: the pivotal algorithms of Lemke and of Borici and Luthi, and the iterative approach "Projected Successive Over-Relaxation". We conclude that a special-purpose algorithm can provide performances vastly superior to those of generic algorithms.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 18 条
[1]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[2]  
BORICI A, 2001, COMPUTUATIONL METHOD
[3]  
BROADIE M, 1997, NUMERICAL METHODS FI
[4]  
Cottle R, 1992, The Linear Complementarity Problem
[5]  
CRYER CW, 1971, SIAM J CONTROL
[6]   Pricing American stock options by linear programming [J].
Dempster, MAH ;
Hutton, JP .
MATHEMATICAL FINANCE, 1999, 9 (03) :229-254
[7]  
DEMPSTER MAH, 1997, APPL MATH FINANCE, P1
[8]  
DEMPSTER MAH, 1998, COMPUTATIONAL FINANC, P61
[9]  
DEWYNE JN, 1995, ADV FUTURES OPTIONS, P145
[10]  
HUANG J, 2002, QUANTITATIVE ANAL FI, V3, P172