Homogenization of a convection-diffusion equation in perforated domains with a weak adsorption

被引:10
作者
Amaziane, B. [1 ]
Goncharenko, M.
Pankratov, L.
机构
[1] Univ Pau, Lab Mathemat Appl, Av Univ, F-64000 Pau, France
[2] CNRS, Lab Mathemat Appl, UMR 5142, F-64000 Pau, France
[3] B Verkin Inst Basses Temp, UA-61103 Kharkov, Ukraine
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2007年 / 58卷 / 04期
关键词
homogenization; perforated domains; convection-diffusion; adsorption;
D O I
10.1007/s00033-006-5070-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to study the asymptotic behavior of the solution of a convection-diffusion equation in perforated domains with oscillating velocity and a Robin boundary condition which describes the adsorption on the bord of the obstacles. Without any periodicity assumption, for a large range of perforated media and by mean of variational homogenization, we find the global behavior when the characteristic size E of the perforations tends to zero. The homogenized model, is a convection-diffusion equation but with an extra term coming from the weak adsorption boundary condition. An example is presented to illustrate the methodology.
引用
收藏
页码:592 / 611
页数:20
相关论文
共 32 条
[1]   AN EXTENSION THEOREM FROM CONNECTED SETS, AND HOMOGENIZATION IN GENERAL PERIODIC DOMAINS [J].
ACERBI, E ;
PIAT, VC ;
DALMASO, G ;
PERCIVALE, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (05) :481-496
[2]   HOMOGENIZATION OF THE NAVIER-STOKES EQUATIONS WITH A SLIP BOUNDARY-CONDITION [J].
ALLAIRE, G .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (06) :605-641
[3]  
ALLAIRE G, 1991, CR ACAD SCI I-MATH, V312, P581
[4]   SOME RESULTS ON HOMOGENIZATION OF CONVECTION-DIFFUSION EQUATIONS [J].
AMIRAT, Y ;
HAMDACHE, K ;
ZIANI, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 114 (02) :155-178
[5]  
[Anonymous], 2006, PROGR MATH PHYS
[6]  
[Anonymous], 1979, MATH USSR SB
[7]   The mass transport by convection and diffusion in a multiporous medium [J].
Baltean, D ;
Lévy, T ;
Balint, S .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 1998, 326 (12) :821-826
[8]  
Bensoussan A., 1978, ASYMPTOTIC ANAL PERI
[9]  
BERLYAND L, 1990, J SOVIET MATH, V53, P3428
[10]   Averaging a transport equation with small diffusion and oscillating velocity [J].
Bourgeat, A ;
Jurak, M ;
Piatnitski, AL .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2003, 26 (02) :95-117