Essential interaction of Egr-1 at an islet-specific response element for basal and gastrin-dependent glucagon gene transactivation in pancreatic α-cells

被引:25
作者
Leung-Theung-Long, S
Roulet, E
Clerc, P
Escrieut, C
Marchal-Victorion, S
Ritz-Laser, B
Philippe, J
Pradayrol, L
Seva, C
Fourmy, D
Dufresne, M
机构
[1] Hosp Rangueil, IFR31, INSERM, U531, F-31059 Toulouse, France
[2] Univ Hosp, Diabet Unit, CH-1211 Geneva 14, Switzerland
关键词
D O I
10.1074/jbc.M407485200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The peptide hormone gastrin is secreted from G cells of the gastric antrum and is the main inducer of gastric acid secretion via activation of its receptor the cholecystokinin 2 (CCK2) receptor. Both gastrin and CCK2 receptors are also transiently detected in the fetal pancreas and believed to exert growth/differentiation effects during endocrine pancreatic development. We demonstrated previously that whereas gastrin expression is extinguished in adult pancreas, CCK2 receptors are present in human glucagon-producing cells where their activation stimulates glucagon secretion. Based on these findings, we investigate in the present study whether gastrin regulates glucagon gene expression. To this aim, the CCK2 receptor was stably expressed into a glucagon-producing pancreatic islet cell line, and a glucagon-reporter fusion gene was transiently transfected in this new cellular model. We report that gastrin stimulates glucagon gene expression in glucagon-producing pancreatic cells. By using progressively 5'-increased sequences of the glucagon gene, gastrin responsiveness was located within the minimal promoter. Moreover, we clearly identified early growth response protein 1 (Egr-1) as an essential transcription factor interacting with the islet cell-specific G4 element. Egr-1 was shown to be essential for basal and gastrin-dependent glucagon gene transactivation. Furthermore, our results demonstrate that the MEK1/ERK1/2 pathway couples the CCK2 receptor to nuclearization and DNA binding of Egr-1. In conclusion, our data provide new information concerning the transcriptional regulation of the glucagon gene. Moreover they open new working hypothesis with reference to a potential role of gastrin in glucagon-producing pancreatic cells.
引用
收藏
页码:7976 / 7984
页数:9
相关论文
共 26 条
[1]   PROGASTRIN EXPRESSION IN MAMMALIAN PANCREAS [J].
BARDRAM, L ;
HILSTED, L ;
REHFELD, JF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (01) :298-302
[2]   Gastrin mediated cholecystokinin-2 receptor activation induces loss of cell adhesion and scattering in epithelial MDCK cells [J].
Bierkamp, C ;
Kowalski-Chauvel, A ;
Dehez, S ;
Fourmy, D ;
Pradayrol, L ;
Seva, C .
ONCOGENE, 2002, 21 (50) :7656-7670
[3]   Hypoglycemia, defective islet glucagon secretion, but normal islet mass in mice with a disruption of the gastrin gene [J].
Boushey, RP ;
Abadir, A ;
Flamez, D ;
Baggio, LL ;
Li, YZ ;
Berger, V ;
Marshall, BA ;
Finegood, D ;
Wang, TC ;
Schuit, F ;
Drucker, DJ .
GASTROENTEROLOGY, 2003, 125 (04) :1164-1174
[4]   COMPLETE TYROSINE-O-SULFATION OF GASTRIN IN NEONATAL RAT PANCREAS [J].
BRAND, SJ ;
ANDERSEN, BN ;
REHFELD, JF .
NATURE, 1984, 309 (5967) :456-458
[5]  
CAO XM, 1993, J BIOL CHEM, V268, P16949
[6]  
CORDIERBUSSAT M, 1995, MOL CELL BIOL, V15, P3904
[7]   Src-family tyrosine kinases in activation of ERK-1 and p85/p110-phosphatidylinositol 3-kinase by G/CCKB receptors [J].
Daulhac, L ;
Kowalski-Chauvel, A ;
Pradayrol, L ;
Vaysse, N ;
Seva, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (29) :20657-20663
[8]  
Dehez S, 2002, CELL GROWTH DIFFER, V13, P375
[9]   Gastrin and gastric epithelial physiology [J].
Dockray, GJ .
JOURNAL OF PHYSIOLOGY-LONDON, 1999, 518 (02) :315-324
[10]   Insulin, but not glucose lowering corrects the hyperglucagonemia and increased proglucagon messenger ribonucleic acid levels observed in insulinopenic diabetes [J].
Dumonteil, E ;
Magnan, C ;
Ritz-Laser, B ;
Meda, P ;
Dussoix, P ;
Gilbert, M ;
Ktorza, A ;
Philippe, J .
ENDOCRINOLOGY, 1998, 139 (11) :4540-4546