Quermassintegral preserving curvature flow in Hyperbolic space

被引:32
作者
Andrews, Ben [1 ]
Wei, Yong [1 ]
机构
[1] Australian Natl Univ, Math Sci Inst, Canberra, ACT 2601, Australia
基金
澳大利亚研究理事会;
关键词
Quermassintegral preserving flow; Hyperbolic space; Alexandrov reflection; MEAN-CURVATURE; CONVEX HYPERSURFACES; INEQUALITIES; MOTION;
D O I
10.1007/s00039-018-0456-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the quermassintegral preserving flow of closed h-convex hypersurfaces in hyperbolic space with the speed given by any positive power of a smooth symmetric, strictly increasing, and homogeneous of degree one function f of the principal curvatures which is inverse concave and has dual f(*) approaching zero on the boundary of the positive cone. We prove that if the initial hypersurface is h-convex, then the solution of the flow becomes strictly h-convex for t > 0, the flow exists for all time and converges to a geodesic sphere exponentially in the smooth topology.
引用
收藏
页码:1183 / 1208
页数:26
相关论文
共 33 条
[2]   Motion of hypersurfaces by Gauss curvature [J].
Andrews, B .
PACIFIC JOURNAL OF MATHEMATICS, 2000, 195 (01) :1-34
[3]  
Andrews B, 2001, INDIANA U MATH J, V50, P783
[4]  
Andrews B., ARXIV170803982
[5]   Pinching estimates and motion of hypersurfaces by curvature functions [J].
Andrews, Ben .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :17-33
[6]   Curvature flow in hyperbolic spaces [J].
Andrews, Ben ;
Chen, Xuzhong .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 729 :29-49
[7]   CONVEXITY ESTIMATES FOR HYPERSURFACES MOVING BY CONVEX CURVATURE FUNCTIONS [J].
Andrews, Ben ;
Langford, Mat ;
McCoy, James .
ANALYSIS & PDE, 2014, 7 (02) :407-433
[8]   Contracting convex hypersurfaces by curvature [J].
Andrews, Ben ;
McCoy, James ;
Zheng, Yu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (3-4) :611-665
[9]  
[Anonymous], 1982, Izv. Akad. Nauk SSSR Ser. Mat.
[10]   Volume-preserving nonhomogeneous mean curvature flow of convex hypersurfaces [J].
Bertini, Maria Chiara ;
Sinestrari, Carlo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (04) :1295-1309