Small point sets of PG(n, q 3) intersecting each k-subspace in 1 mod q points

被引:1
作者
Harrach, Nora V. [1 ]
Metsch, Klaus [2 ]
机构
[1] Eotvos Lorand Univ, Dept Comp Sci, H-1117 Budapest, Hungary
[2] Univ Giessen, Giessen, Germany
关键词
Projective space; Blocking set; Linearity conjecture; SMALL BLOCKING SETS;
D O I
10.1007/s10623-010-9407-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The main result of this paper is that point sets of PG(n, q (3)), q = p (h) , p a parts per thousand yen 7 prime, of size less than 3(q (3(n-k)) + 1)/2 intersecting each k-space in 1 modulo q points (these are always small minimal blocking sets with respect to k-spaces) are linear blocking sets. As a consequence, we get that minimal blocking sets of PG(n, p (3)), p a parts per thousand yen 7 prime, of size less than 3(p (3(n-k)) + 1)/2 with respect to k-spaces are linear. We also give a classification of small linear blocking sets of PG(n, q (3)) which meet every (n - 2)-space in 1 modulo q points.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 13 条
[1]   Scattered spaces with respect to a spread in PG(n,q) [J].
Blokhuis, A ;
Lavrauw, M .
GEOMETRIAE DEDICATA, 2000, 81 (1-3) :231-243
[2]  
Bose R. C., 1966, J. Combin. Theory, V1, P96
[3]  
HARRACH NV, J GEOM UNPUB
[4]  
LAVRAUW M, J COMB THEOR A UNPUB
[5]   Translation ovoids of orthogonal polar spaces [J].
Lunardon, G ;
Polverino, O .
FORUM MATHEMATICUM, 2004, 16 (05) :663-669
[6]   Small minimal blocking sets and complete k-arcs in PG(2, p3) [J].
Polverino, O .
DISCRETE MATHEMATICS, 1999, 208 :469-476
[7]   Small minimal blocking sets in PG(2, q3) [J].
Polverino, O ;
Storme, L .
EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (01) :83-92
[8]   On 1-blocking sets in PG(n, q), n ≥ 3 [J].
Storme, L ;
Weiner, Z .
DESIGNS CODES AND CRYPTOGRAPHY, 2000, 21 (1-3) :235-251
[9]  
Sz6nyi T., 1997, Finite Fields Appl., V3, P187
[10]   On small blocking sets and their linearity [J].
Sziklai, Peter .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (07) :1167-1182