Machine Learning in Electromagnetics With Applications to Biomedical Imaging: A Review

被引:47
|
作者
Li, Maokun [1 ]
Guo, Rui [1 ]
Zhang, Ke [1 ]
Lin, Zhichao [1 ]
Yang, Fan [1 ]
Xu, Shenheng [1 ]
Chen, Xudong [2 ]
Massa, Andrea [3 ,4 ,5 ]
Abubakar, Aria [6 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100086, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Univ Trento, I-38123 Trento, Italy
[4] Univ Elect Sci & Technol China, Chengdu 610097, Peoples R China
[5] Tsinghua Univ, Beijing 100086, Peoples R China
[6] Schlumberger, Data Sci Digital Subsurface Solut, Houston, TX 77056 USA
基金
国家重点研发计划; 美国国家科学基金会;
关键词
Imaging; Machine learning; Biomedical imaging; Biomedical measurement; Training; Machine learning algorithms; Physics; LOW-DOSE CT; NEURAL-NETWORK; NOISE-REDUCTION; RECONSTRUCTION; CLASSIFICATION; COMBINATION; REMOVAL; DOMAIN;
D O I
10.1109/MAP.2020.3043469
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biomedical imaging is a relevant noninvasive technique aimed at generating an image of the biological structure under analysis. The arising visual representation of the characteristics of the object is affected by both the measurement process and reconstruction algorithm. This procedure can be considered as a hybridization of data information, measurement physics, and prior information.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 50 条
  • [41] Machine learning for drilling applications: A review
    Zhong, Ruizhi
    Salehi, Cyrus
    Johnson, Ray
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2022, 108
  • [42] Machine Learning Applications for Head and Neck Imaging
    Maleki, Farhad
    Le, William Trung
    Sananmuang, Thiparom
    Kadoury, Samuel
    Forghani, Reza
    NEUROIMAGING CLINICS OF NORTH AMERICA, 2020, 30 (04) : 517 - +
  • [43] Meta-Analysis and Systematic Review of the Application of Machine Learning Classifiers in Biomedical Applications of Infrared Thermography
    Magalhaes, Carolina
    Mendes, Joaquim
    Vardasca, Ricardo
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 18
  • [44] A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications
    Khan, Atiya
    Vibhute, Amol D.
    Mali, Shankar
    Patil, C. H.
    ECOLOGICAL INFORMATICS, 2022, 69
  • [45] Applications of machine learning for imaging-driven diagnosis of musculoskeletal malignancies—a scoping review
    Florian Hinterwimmer
    Sarah Consalvo
    Jan Neumann
    Daniel Rueckert
    Rüdiger von Eisenhart-Rothe
    Rainer Burgkart
    European Radiology, 2022, 32 : 7173 - 7184
  • [46] Leveraging Machine Learning for Personalized Wearable Biomedical Devices: A Review
    Olyanasab, Ali
    Annabestani, Mohsen
    JOURNAL OF PERSONALIZED MEDICINE, 2024, 14 (02):
  • [47] Machine Learning and Deep Learning Applications in Magnetic Particle Imaging
    Nigam, Saumya
    Gjelaj, Elvira
    Wang, Rui
    Wei, Guo-Wei
    Wang, Ping
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2025, 61 (01) : 42 - 51
  • [48] Intelligent imaging: Applications of machine learning and deep learning in radiology
    Currie, Geoff
    Rohren, Eric
    VETERINARY RADIOLOGY & ULTRASOUND, 2022, 63 : 880 - 888
  • [49] Guest Editorial Advanced Machine Learning Algorithms for Biomedical Data and Imaging
    Tanveer, M.
    Lin, Chin-Teng
    Kumar Singh, Amit
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (10) : 4809 - 4813
  • [50] Adapted filter banks in machine learning: Applications in biomedical signal processing
    Strauss, DJ
    Delb, W
    Jung, J
    Plinkert, PK
    2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 425 - 428