Machine Learning in Electromagnetics With Applications to Biomedical Imaging: A Review

被引:47
|
作者
Li, Maokun [1 ]
Guo, Rui [1 ]
Zhang, Ke [1 ]
Lin, Zhichao [1 ]
Yang, Fan [1 ]
Xu, Shenheng [1 ]
Chen, Xudong [2 ]
Massa, Andrea [3 ,4 ,5 ]
Abubakar, Aria [6 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100086, Peoples R China
[2] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117583, Singapore
[3] Univ Trento, I-38123 Trento, Italy
[4] Univ Elect Sci & Technol China, Chengdu 610097, Peoples R China
[5] Tsinghua Univ, Beijing 100086, Peoples R China
[6] Schlumberger, Data Sci Digital Subsurface Solut, Houston, TX 77056 USA
基金
国家重点研发计划; 美国国家科学基金会;
关键词
Imaging; Machine learning; Biomedical imaging; Biomedical measurement; Training; Machine learning algorithms; Physics; LOW-DOSE CT; NEURAL-NETWORK; NOISE-REDUCTION; RECONSTRUCTION; CLASSIFICATION; COMBINATION; REMOVAL; DOMAIN;
D O I
10.1109/MAP.2020.3043469
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Biomedical imaging is a relevant noninvasive technique aimed at generating an image of the biological structure under analysis. The arising visual representation of the characteristics of the object is affected by both the measurement process and reconstruction algorithm. This procedure can be considered as a hybridization of data information, measurement physics, and prior information.
引用
收藏
页码:39 / 51
页数:13
相关论文
共 50 条
  • [31] A Review of Machine Learning and Deep Learning Applications
    Shinde, Pramila P.
    Shah, Seema
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [32] Advancements in Cholelithiasis Diagnosis: A Systematic Review of Machine Learning Applications in Imaging Analysis
    Ahmed, Almegdad S.
    Ahmed, Sharwany S.
    Mohamed, Shakir
    Salman, Noureia E.
    Humidan, Abubakr Ali M.
    Ibrahim, Rami F.
    Salim, Rammah S.
    Elamir, Ahmed A. Mohamed
    Hakim, Elmahdi M.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (08)
  • [33] Applications of machine learning in time-domain fluorescence lifetime imaging: a review
    Gouzou, Dorian
    Taimori, Ali
    Haloubi, Tarek
    Finlayson, Neil
    Wang, Qiang
    Hopgood, James R.
    Vallejo, Marta
    METHODS AND APPLICATIONS IN FLUORESCENCE, 2024, 12 (02):
  • [34] Recent Advances in Thermal Imaging and its Applications Using Machine Learning: A Review
    Wilson, A. N.
    Gupta, Khushi Anil
    Koduru, Balu Harshavardan
    Kumar, Abhinav
    Jha, Ajit
    Cenkeramaddi, Linga Reddy
    IEEE SENSORS JOURNAL, 2023, 23 (04) : 3395 - 3407
  • [35] Clinical Applications of Artificial Intelligence, Machine Learning, and Deep Learning in the Imaging of Gliomas: A Systematic Review
    Alhasan, Ayman S.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2021, 13 (11)
  • [36] A comprehensive review on magnetic imaging techniques for biomedical applications
    Mukhatov, Azamat
    Tuan-Anh Le
    Pham, Tri T.
    Ton Duc Do
    NANO SELECT, 2023, 4 (03): : 213 - 230
  • [37] Exploiting the similarity of dissimilarities for biomedical applications and enhanced machine learning
    Kabir, Mohammad Neamul
    Wang, Li Rong
    Goh, Wilson Wen Bin
    PLOS COMPUTATIONAL BIOLOGY, 2025, 21 (01)
  • [38] Machine Learning for Bioelectromagnetics and Biomedical Engineering: Some Sample Applications
    De Cillis, Alfredo
    Tarricone, Luciano
    Zappatore, Marco
    2022 IEEE MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE (IMBIOC), 2022, : 13 - 15
  • [39] A Review on Industrial Applications of Machine Learning
    Rao, N. Thirupathi
    INTERNATIONAL JOURNAL OF DISASTER RECOVERY AND BUSINESS CONTINUITY, 2018, 9 : 1 - 9
  • [40] Machine Learning and its Applications: A Review
    Angra, Sheena
    Ahuja, Sachin
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC), 2017, : 57 - 60