Population-Based Hierarchical Non-Negative Matrix Factorization for Survey Data

被引:0
作者
Ding, Xiaofu [1 ]
Dong, Xinyu [1 ]
McGough, Olivia [2 ]
Shen, Chenxin [1 ]
Ulichney, Annie [3 ]
Xu, Ruiyao [1 ]
Swartworth, William [1 ]
Chi, Jocelyn T. [1 ]
Needell, Deanna [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90024 USA
[2] Reed Coll, Dept Math, Portland, OR USA
[3] Yale Univ, Dept Appl Math, New Haven, CT USA
来源
2022 IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT | 2022年
关键词
Non-negative matrix factorization; hierarchical clustering; survey data; latent classes; population structure; CLIMATE-CHANGE; ALGORITHMS; POLCA;
D O I
10.1109/BDCAT56447.2022.00035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Motivated by the problem of identifying potential hierarchical population structure on modern survey data containing a wide range of complex data types, we introduce population-based hierarchical non-negative matrix factorization (PHNMF). PHNMF is a variant of hierarchical non-negative matrix factorization based on feature similarity. As such, it enables an automatic and interpretable approach for identifying and understanding hierarchical structure in a data matrix constructed from a wide range of data types. Our numerical experiments on synthetic and real survey data demonstrate that PHNMF can recover latent hierarchical population structure in complex data with high accuracy. Moreover, the recovered subpopulation structure is meaningful and can be useful for improving downstream inference.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 50 条
[42]   General subspace constrained non-negative matrix factorization for data representation [J].
Liu, Yong ;
Liao, Yiyi ;
Tang, Liang ;
Tang, Feng ;
Liu, Weicong .
NEUROCOMPUTING, 2016, 173 :224-232
[43]   A framework for intelligent Twitter data analysis with non-negative matrix factorization [J].
Casalino, Gabriella ;
Castiello, Ciro ;
Del Buono, Nicoletta ;
Mencar, Corrado .
INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2018, 14 (03) :334-356
[44]   Rank selection for non-negative matrix factorization [J].
Cai, Yun ;
Gu, Hong ;
Kenney, Toby .
STATISTICS IN MEDICINE, 2023, 42 (30) :5676-5693
[45]   FARNESS PRESERVING NON-NEGATIVE MATRIX FACTORIZATION [J].
Babaee, Mohammadreza ;
Bahmanyar, Reza ;
Rigoll, Gerhard ;
Datcu, Mihai .
2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, :3023-3027
[46]   A Particle-Based Variational Approach to Bayesian Non-negative Matrix Factorization [J].
Masood, Muhammad A. ;
Doshi-Velez, Finale .
JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
[47]   Enforced Sparse Non-Negative Matrix Factorization [J].
Gavin, Brendan ;
Gadepally, Vijay ;
Kepner, Jeremy .
2016 IEEE 30TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2016, :902-911
[48]   Novel Algorithm for Non-Negative Matrix Factorization [J].
Tran Dang Hien ;
Do Van Tuan ;
Pham Van At ;
Le Hung Son .
NEW MATHEMATICS AND NATURAL COMPUTATION, 2015, 11 (02) :121-133
[49]   Optimization and expansion of non-negative matrix factorization [J].
Xihui Lin ;
Paul C. Boutros .
BMC Bioinformatics, 21
[50]   Optimization and expansion of non-negative matrix factorization [J].
Lin, Xihui ;
Boutros, Paul C. .
BMC BIOINFORMATICS, 2020, 21 (01)