Transcendental Hodge algebra

被引:2
|
作者
Verbitsky, Misha [1 ,2 ]
机构
[1] Natl Res Univ HSE, Dept Math, Lab Algebra Geometry, 7 Vavilova Str, Moscow, Russia
[2] Univ Libre Bruxelles, CP 218,Bd Triomphe, B-1050 Brussels, Belgium
来源
SELECTA MATHEMATICA-NEW SERIES | 2017年 / 23卷 / 03期
基金
俄罗斯科学基金会;
关键词
Hyperkahler manifold; Hodge structure; Transcendental Hodge lattice; Birational invariance; LIE-ALGEBRAS; SUBVARIETIES; MANIFOLDS;
D O I
10.1007/s00029-017-0307-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transcendental Hodge lattice of a projective manifold M is the smallest Hodge substructure in pth cohomology which contains all holomorphic p-forms. We prove that the direct sum of all transcendental Hodge lattices has a natural algebraic structure, and compute this algebra explicitly for a hyperkahler manifold. As an application, we obtain a theorem about dimension of a compact torus T admitting a holomorphic symplectic embedding to a hyperkahler manifold M. If M is generic in a d-dimensional family of deformations, then dim T >= 2([(d+1)/2]).
引用
收藏
页码:2203 / 2218
页数:16
相关论文
共 50 条
  • [31] HODGE THEORY AND LAGRANGIAN PLANES ON GENERALIZED KUMMER FOURFOLDS
    Hassett, Brendan
    Tschinkel, Yuri
    MOSCOW MATHEMATICAL JOURNAL, 2013, 13 (01) : 33 - 56
  • [32] Hodge symmetry and decomposition on non-Kahler solvmanifolds
    Kasuya, Hisashi
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 : 61 - 65
  • [33] Local rigidity for complex hyperbolic lattices and Hodge theory
    B. Klingler
    Inventiones mathematicae, 2011, 184 : 455 - 498
  • [34] Real Polarizable Hodge Structures Arising from Foliations
    Christopher Deninger
    Wilhelm Singhof
    Annals of Global Analysis and Geometry, 2002, 21 : 377 - 399
  • [35] Calabi-Yau Threefolds with Small Hodge Numbers
    Candelas, Philip
    Constantin, Andrei
    Mishra, Challenger
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2018, 66 (06):
  • [36] The universal enveloping algebra of sl2 and the Racah algebra
    Bockting-Conrad, Sarah
    Huang, Hau-Wen
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (03) : 1022 - 1040
  • [37] Center of Schrodinger algebra and annihilators of Verma modules for Schrodinger algebra
    Wu, Yuezhu
    Zhu, Linsheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (01) : 184 - 188
  • [38] Hodge theory and deformations of affine cones of subcanonical projective varieties
    Di Natale, Carmelo
    Fatighenti, Enrico
    Fiorenza, Domenico
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2017, 96 : 524 - 544
  • [39] Spectral and Hodge theory of "Witt" incomplete cusp edge spaces
    Gell-Redman, Jesse
    Swoboda, Jan
    COMMENTARII MATHEMATICI HELVETICI, 2019, 94 (04) : 701 - 765
  • [40] Von Neumann dimension, Hodge index theorem and geometric applications
    Bei, Francesco
    EUROPEAN JOURNAL OF MATHEMATICS, 2019, 5 (04) : 1212 - 1233