Transcendental Hodge algebra

被引:2
|
作者
Verbitsky, Misha [1 ,2 ]
机构
[1] Natl Res Univ HSE, Dept Math, Lab Algebra Geometry, 7 Vavilova Str, Moscow, Russia
[2] Univ Libre Bruxelles, CP 218,Bd Triomphe, B-1050 Brussels, Belgium
来源
SELECTA MATHEMATICA-NEW SERIES | 2017年 / 23卷 / 03期
基金
俄罗斯科学基金会;
关键词
Hyperkahler manifold; Hodge structure; Transcendental Hodge lattice; Birational invariance; LIE-ALGEBRAS; SUBVARIETIES; MANIFOLDS;
D O I
10.1007/s00029-017-0307-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The transcendental Hodge lattice of a projective manifold M is the smallest Hodge substructure in pth cohomology which contains all holomorphic p-forms. We prove that the direct sum of all transcendental Hodge lattices has a natural algebraic structure, and compute this algebra explicitly for a hyperkahler manifold. As an application, we obtain a theorem about dimension of a compact torus T admitting a holomorphic symplectic embedding to a hyperkahler manifold M. If M is generic in a d-dimensional family of deformations, then dim T >= 2([(d+1)/2]).
引用
收藏
页码:2203 / 2218
页数:16
相关论文
共 50 条