Leaf space isometries of singular Riemannian foliations and their spectral properties

被引:0
作者
Adelstein, Ian M. [1 ]
Sandoval, M. R. [2 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06520 USA
[2] Trinity Coll, Dept Math, Hartford, CT 06106 USA
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2021年 / 15卷 / 01期
基金
美国国家科学基金会;
关键词
Spectral geometry; Laplace operator; Orbifolds; Orbit spaces; Group actions; MEAN-CURVATURE FLOW;
D O I
10.1007/s40863-019-00140-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, the authors show by example that an isometry between leaf spaces of singular Riemannian foliations need not induce an equality of the basic spectra. If the leaf space isometry preserves the mean curvature vector fields, then it is proved that the basic spectra are equivalent, i.e. that the leaf spaces are isospectral. As a corollary to the main result, the authors identify geometric conditions that ensure preservation of the mean curvature vector fields, and therefore isospectrality of the leaf spaces.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 16 条