Maximal and maximum dissociation sets in general and triangle-free graphs

被引:11
作者
Tu, Jianhua [1 ]
Li, Yuxin [2 ]
Du, Junfeng [2 ,3 ,4 ]
机构
[1] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[3] Key Lab Tibetan Informat Proc & Machine Translat, Xining 810008, Qinghai, Peoples R China
[4] Minist Educ, Key Lab Tibetan Informat Proc, Xining 810008, Peoples R China
关键词
Maximal dissociation sets; General graphs; Triangle-free graphs; Extremal graphs; 3-PATH VERTEX COVER; INDEPENDENT SETS; DOMINATING SETS; NUMBER; ENUMERATION;
D O I
10.1016/j.amc.2022.127107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a graph G , a subset of vertices is a dissociation set if it induces a subgraph with maxi-mum degree at most 1 . A maximal dissociation set of G is a dissociation set which is not a proper subset of any other dissociation sets. A maximum dissociation set is a dissocia-tion set of maximum size. We show that every graph of order n has at most 10 n5 maximal dissociation sets, and that every triangle-free graph of order n has at most 6 n4 maximal dissociation sets. We also characterize the extremal graphs on which these upper bounds are attained. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 27 条
  • [1] On the maximum number of minimum dominating sets in forests
    Alvarado, J. D.
    Dantas, S.
    Mohr, E.
    Rautenbach, D.
    [J]. DISCRETE MATHEMATICS, 2019, 342 (04) : 934 - 942
  • [2] Maximal Induced Matchings in Triangle-Free Graphs
    Basavaraju, Manu
    Heggernes, Pinar
    van 't Hof, Pim
    Saei, Reza
    Villanger, Yngve
    [J]. GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2014, 8747 : 93 - 104
  • [3] Bounds on the maximum number of minimum dominating sets
    Connolly, Samuel
    Gabor, Zachary
    Godbole, Anant
    Kay, Bill
    Kelly, Thomas
    [J]. DISCRETE MATHEMATICS, 2016, 339 (05) : 1537 - 1542
  • [4] Couturier Jean-Francois, 2012, Computing and Combinatorics. Proceedings of the 18th Annual International Conference COCOON 2012, P133, DOI 10.1007/978-3-642-32241-9_12
  • [5] On the minimum feedback vertex set problem: Exact and enumeration algorithms
    Fomin, Fedor V.
    Gaspers, Serge
    Pyatkin, Artem V.
    Razgon, Igor
    [J]. ALGORITHMICA, 2008, 52 (02) : 293 - 307
  • [6] Fomin FV, 2005, LECT NOTES COMPUT SC, V3827, P573, DOI 10.1007/11602613_58
  • [7] THE NUMBER OF MAXIMAL INDEPENDENT SETS IN CONNECTED GRAPHS
    FUREDI, Z
    [J]. JOURNAL OF GRAPH THEORY, 1987, 11 (04) : 463 - 470
  • [8] Feedback Vertex Sets in Tournaments
    Gaspers, Serge
    Mnich, Matthias
    [J]. JOURNAL OF GRAPH THEORY, 2013, 72 (01) : 72 - 89
  • [9] Enumeration and maximum number of minimal connected vertex covers in graphs
    Golovach, Petr A.
    Heggernes, Pinar
    Kratsch, Dieter
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2018, 68 : 132 - 147
  • [10] THE NUMBER OF MAXIMAL INDEPENDENT SETS IN A CONNECTED GRAPH
    GRIGGS, JR
    GRINSTEAD, CM
    GUICHARD, DR
    [J]. DISCRETE MATHEMATICS, 1988, 68 (2-3) : 211 - 220