Maximal and maximum dissociation sets in general and triangle-free graphs

被引:14
作者
Tu, Jianhua [1 ]
Li, Yuxin [2 ]
Du, Junfeng [2 ,3 ,4 ]
机构
[1] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
[2] Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China
[3] Key Lab Tibetan Informat Proc & Machine Translat, Xining 810008, Qinghai, Peoples R China
[4] Minist Educ, Key Lab Tibetan Informat Proc, Xining 810008, Peoples R China
关键词
Maximal dissociation sets; General graphs; Triangle-free graphs; Extremal graphs; 3-PATH VERTEX COVER; INDEPENDENT SETS; DOMINATING SETS; NUMBER; ENUMERATION;
D O I
10.1016/j.amc.2022.127107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a graph G , a subset of vertices is a dissociation set if it induces a subgraph with maxi-mum degree at most 1 . A maximal dissociation set of G is a dissociation set which is not a proper subset of any other dissociation sets. A maximum dissociation set is a dissocia-tion set of maximum size. We show that every graph of order n has at most 10 n5 maximal dissociation sets, and that every triangle-free graph of order n has at most 6 n4 maximal dissociation sets. We also characterize the extremal graphs on which these upper bounds are attained. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 27 条
[1]   On the maximum number of minimum dominating sets in forests [J].
Alvarado, J. D. ;
Dantas, S. ;
Mohr, E. ;
Rautenbach, D. .
DISCRETE MATHEMATICS, 2019, 342 (04) :934-942
[2]   Maximal Induced Matchings in Triangle-Free Graphs [J].
Basavaraju, Manu ;
Heggernes, Pinar ;
van 't Hof, Pim ;
Saei, Reza ;
Villanger, Yngve .
GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2014, 8747 :93-104
[3]   Bounds on the maximum number of minimum dominating sets [J].
Connolly, Samuel ;
Gabor, Zachary ;
Godbole, Anant ;
Kay, Bill ;
Kelly, Thomas .
DISCRETE MATHEMATICS, 2016, 339 (05) :1537-1542
[4]  
Couturier Jean-Francois, 2012, Computing and Combinatorics. Proceedings of the 18th Annual International Conference COCOON 2012, P133, DOI 10.1007/978-3-642-32241-9_12
[5]   On the minimum feedback vertex set problem: Exact and enumeration algorithms [J].
Fomin, Fedor V. ;
Gaspers, Serge ;
Pyatkin, Artem V. ;
Razgon, Igor .
ALGORITHMICA, 2008, 52 (02) :293-307
[6]  
Fomin FV, 2005, LECT NOTES COMPUT SC, V3827, P573, DOI 10.1007/11602613_58
[7]   THE NUMBER OF MAXIMAL INDEPENDENT SETS IN CONNECTED GRAPHS [J].
FUREDI, Z .
JOURNAL OF GRAPH THEORY, 1987, 11 (04) :463-470
[8]   Feedback Vertex Sets in Tournaments [J].
Gaspers, Serge ;
Mnich, Matthias .
JOURNAL OF GRAPH THEORY, 2013, 72 (01) :72-89
[9]   Enumeration and maximum number of minimal connected vertex covers in graphs [J].
Golovach, Petr A. ;
Heggernes, Pinar ;
Kratsch, Dieter .
EUROPEAN JOURNAL OF COMBINATORICS, 2018, 68 :132-147
[10]   THE NUMBER OF MAXIMAL INDEPENDENT SETS IN A CONNECTED GRAPH [J].
GRIGGS, JR ;
GRINSTEAD, CM ;
GUICHARD, DR .
DISCRETE MATHEMATICS, 1988, 68 (2-3) :211-220