Time series classification for online tamil handwritten character recognition - A kernel based approach

被引:0
作者
Sivaramakrishnan, KR [1 ]
Bhattacharyya, C
机构
[1] Indian Inst Sci, Dept Elect Engn, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Comp Sci & Automat, Bangalore 560012, Karnataka, India
来源
NEURAL INFORMATION PROCESSING | 2004年 / 3316卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we consider the problem of time series classification. Using piecewise linear interpolation various novel kernels are obtained which can be used with Support vector machines for designing classifiers capable of deciding the class of a given time series. The approach is general and is applicable in many scenarios. We apply the method to the task of Online Tamil handwritten character recognition with promising results.
引用
收藏
页码:800 / 805
页数:6
相关论文
共 13 条
  • [1] On-line handwriting recognition with support vector machines - A kernel approach
    Bahlmann, C
    Haasdonk, B
    Burkhardt, H
    [J]. EIGHTH INTERNATIONAL WORKSHOP ON FRONTIERS IN HANDWRITING RECOGNITION: PROCEEDINGS, 2002, : 49 - 54
  • [2] Dietrich C., 2001, Multiple Classifier Systems. Second International Workshop, MCS 2001. Proceedings (Lecture Notes in Computer Science Vol.2096), P378
  • [3] Genetic algorithms and support vector machines for time series classification
    Eads, D
    Hill, D
    Davis, S
    Perkins, S
    Ma, JS
    Porter, R
    Theiler, J
    [J]. APPLICATIONS AND SCIENCE OF NEURAL NETWORKS, FUZZY SYSTEMS, AND EVOLUTIONARY COMPUTATION V, 2002, 4787 : 74 - 85
  • [4] Geurts P., 2001, P EUR C PRINC DAT MI, P115, DOI DOI 10.1007/3-540-44794-6_10
  • [5] HSU WH, 1999, P INT JOINT C NEUR N, V3, P1574
  • [6] Joachims J., 1999, ADV KERNEL METHODS S
  • [7] KADOUS MW, THESIS U NEW S WALES
  • [8] Keogh E. J., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P239
  • [9] Ma J., OSU SVM Classifier Matlab Toolbox
  • [10] Moore RE, 1985, COMPUTATIONAL FUNCTI