Exergy Dynamics of Systems in Thermal or Concentration Non-Equilibrium

被引:9
作者
Sciubba, Enrico [1 ]
Zullo, Federico [2 ]
机构
[1] Sapienza Univ Rome, Dept Mech & Aerosp Engn, I-00184 Rome, Italy
[2] Univ Roma Tre, Dept Math & Phys, I-00146 Rome, Italy
来源
ENTROPY | 2017年 / 19卷 / 06期
关键词
non-equilibrium thermodynamics; exergy; non-equilibrium diffusion; UNIFIED QUANTUM-THEORY; AVAILABLE ENERGY; THERMODYNAMICS; ENTROPY; MECHANICS; EQUILIBRIUM;
D O I
10.3390/e19060263
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The paper addresses the problem of the existence and quantification of the exergy of non-equilibrium systems. Assuming that both energy and exergy are a priori concepts, the Gibbs available energy A is calculated for arbitrary temperature or concentration distributions across the body, with an accuracy that depends only on the information one has of the initial distribution. It is shown that A exponentially relaxes to its equilibrium value, and it is then demonstrated that its value is different from that of the non-equilibrium exergy, the difference depending on the imposed boundary conditions on the system and thus the two quantities are shown to be incommensurable. It is finally argued that all iso-energetic non-equilibrium states can be ranked in terms of their non-equilibrium exergy content, and that each point of the Gibbs plane corresponds therefore to a set of possible initial distributions, each one with its own exergy-decay history. The non-equilibrium exergy is always larger than its equilibrium counterpart and constitutes the real total exergy content of the system, i.e., the real maximum work extractable from the initial system. A systematic application of this paradigm may be beneficial for meaningful future applications in the fields of engineering and natural science.
引用
收藏
页数:21
相关论文
共 50 条
[21]   Global dynamics of non-equilibrium gliding in animals [J].
Yeaton, Isaac J. ;
Socha, John J. ;
Ross, Shane D. .
BIOINSPIRATION & BIOMIMETICS, 2017, 12 (02)
[22]   Learning the non-equilibrium dynamics of Brownian movies [J].
Gnesotto, Federico S. ;
Gradziuk, Grzegorz ;
Ronceray, Pierre ;
Broedersz, Chase P. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[23]   Quantum non-equilibrium effects in rigidly-rotating thermal states [J].
Ambrus, Victor E. .
PHYSICS LETTERS B, 2017, 771 :151-156
[24]   Non-equilibrium attractor for non-linear stochastic dynamics [J].
Patron, A. ;
Sanchez-Rey, B. ;
Trizac, E. ;
Prados, A. .
EPL, 2024, 145 (01)
[25]   Non-Equilibrium Thermodynamics of Heat Transport in Superlattices, Graded Systems, and Thermal Metamaterials with Defects [J].
Jou, David ;
Restuccia, Liliana .
ENTROPY, 2023, 25 (07)
[26]   Non-equilibrium cytoquake dynamics in cytoskeletal remodeling and stabilization [J].
Alencar, Adriano Mesquita ;
Ayres Ferraz, Mariana Sacrini ;
Park, Chan Young ;
Millet, Emil ;
Trepat, Xavier ;
Fredberg, Jeffrey J. ;
Butler, James P. .
SOFT MATTER, 2016, 12 (41) :8506-8511
[27]   Non-Equilibrium Dislocation Dynamics in Semiconductor Crystals and Superlattices [J].
Jou, David ;
Restuccia, Liliana .
JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2018, 43 (02) :163-170
[28]   Mesoscopic non-equilibrium thermodynamics approach to the dynamics of polymers [J].
Rubí, JM ;
Pérez-Madrid, A .
PHYSICA A, 2001, 298 (1-2) :177-186
[29]   Studying polymer diffusiophoresis with non-equilibrium molecular dynamics [J].
Ramirez-Hinestrosa, S. ;
Yoshida, H. ;
Bocquet, L. ;
Frenkel, D. .
JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (16)
[30]   Non-equilibrium dynamics of a scalar field with quantum backreaction [J].
Kainulainen, Kimmo ;
Koskivaara, Olli .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (12)