A Classical Background for the Wave Function Prediction in the Infinite System Density Matrix Renormalization Group Method

被引:10
|
作者
Ueda, Hiroshi [1 ]
Gendiar, Andrej [2 ]
Nishino, Tomotoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Mat Engn Sci, Osaka 5608531, Japan
[2] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia
[3] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
关键词
DMRG; PWFRG; CTMRG; renormalization; QUANTUM SPIN CHAINS; MAGNETIZATION PROCESS; PHASE-TRANSITION; SURFACE; STATES; POINT; ANTIFERROMAGNETS; LATTICE; MODEL;
D O I
10.1143/JPSJ.79.044001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a physical background of the wave function prediction in the infinite system density matrix renormalization group (DMRG) method, from the view point of two-dimensional vertex model, a typical lattice model in statistical mechanics. Singular value decomposition applied to rectangular corner transfer matrices naturally draws matrix product representation for the maximal eigenvector of the row-to-row transfer matrix. The wave function prediction can be expressed as the insertion of an approximate half-column transfer matrix. This insertion process is in accordance with the scheme proposed by McCulloch recently.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Full-CI quantum chemistry using the density matrix renormalization group
    Daul, S
    Ciofini, I
    Daul, C
    White, SR
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2000, 79 (06) : 331 - 342
  • [42] Real-space parallel density matrix renormalization group with adaptive boundaries*
    Chen, Fu-Zhou
    Cheng, Chen
    Luo, Hong-Gang
    CHINESE PHYSICS B, 2021, 30 (08)
  • [43] Density-matrix renormalization-group study of coupled Luttinger liquids
    Moukouri, S.
    Eidelstein, E.
    PHYSICAL REVIEW B, 2010, 82 (16):
  • [44] On the fly swapping algorithm for ordering of degrees of freedom in density matrix renormalization group
    Li, Weitang
    Ren, Jiajun
    Yang, Hengrui
    Shuai, Zhigang
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2022, 34 (25)
  • [45] The Variational Problem and Background Field in the Renormalization Group Method for Nonlinear Sigma Models
    Goswami, Abhishek
    ANNALES HENRI POINCARE, 2024, 25 (03): : 2065 - 2085
  • [46] Strongly Correlated Systems and the Method of the Renormalization Group Matrix in Quantum Chemistry
    Veis, Libor
    Brandejs, Jan
    Pittner, Jiri
    CHEMICKE LISTY, 2018, 112 (10): : 655 - 666
  • [47] Reducing the numerical effort of finite-temperature density matrix renormalization group calculations
    Karrasch, C.
    Bardarson, J. H.
    Moore, J. E.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [48] Density-matrix renormalization group algorithm with multi-level active space
    Ma, Yingjin
    Wen, Jing
    Ma, Haibo
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (03)
  • [49] Metallic ferromagnetism in a one-dimensional Hubbard model; Study using the density-matrix renormalization-group method
    Sakamoto, H
    Kubo, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (12) : 3732 - 3735
  • [50] Density-matrix renormalization group study of many-body localization in floquet eigenstates
    Zhang, Carolyn
    Pollmann, Frank
    Sondhi, S. L.
    Moessner, Roderich
    ANNALEN DER PHYSIK, 2017, 529 (07)