A Classical Background for the Wave Function Prediction in the Infinite System Density Matrix Renormalization Group Method

被引:10
|
作者
Ueda, Hiroshi [1 ]
Gendiar, Andrej [2 ]
Nishino, Tomotoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Mat Engn Sci, Osaka 5608531, Japan
[2] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia
[3] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
关键词
DMRG; PWFRG; CTMRG; renormalization; QUANTUM SPIN CHAINS; MAGNETIZATION PROCESS; PHASE-TRANSITION; SURFACE; STATES; POINT; ANTIFERROMAGNETS; LATTICE; MODEL;
D O I
10.1143/JPSJ.79.044001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a physical background of the wave function prediction in the infinite system density matrix renormalization group (DMRG) method, from the view point of two-dimensional vertex model, a typical lattice model in statistical mechanics. Singular value decomposition applied to rectangular corner transfer matrices naturally draws matrix product representation for the maximal eigenvector of the row-to-row transfer matrix. The wave function prediction can be expressed as the insertion of an approximate half-column transfer matrix. This insertion process is in accordance with the scheme proposed by McCulloch recently.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Boundary effects in the density-matrix renormalization group calculation
    Shibata, Naokazu
    Hotta, Chisa
    PHYSICAL REVIEW B, 2011, 84 (11)
  • [22] Efficient perturbation theory to improve the density matrix renormalization group
    Tirrito, Emanuele
    Ran, Shi-Ju
    Ferris, Andrew J.
    McCulloch, Ian P.
    Lewenstein, Maciej
    PHYSICAL REVIEW B, 2017, 95 (06)
  • [24] Study of linear and nonlinear optical properties of dendrimers using density matrix renormalization group method
    Mukhopadhyay, S.
    Ramasesha, S.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (07)
  • [25] Theory and Applications of Time Dependent Density Matrix Renormalization Group
    Li Weitang
    Ren Jiajun
    Shuai Zhigang
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2021, 42 (07): : 2085 - 2102
  • [26] The density matrix renormalization group for ab initio quantum chemistry
    Wouters, Sebastian
    Van Neck, Dimitri
    EUROPEAN PHYSICAL JOURNAL D, 2014, 68 (09)
  • [27] Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group
    Muender, W.
    Weichselbaum, A.
    Holzner, A.
    von Delft, Jan
    Henley, C. L.
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [28] Adaptive Lanczos-vector method for dynamic properties within the density matrix renormalization group
    Dargel, P. E.
    Honecker, A.
    Peters, R.
    Noack, R. M.
    Pruschke, T.
    PHYSICAL REVIEW B, 2011, 83 (16):
  • [29] Studying a relativistic field theory at finite chemical potential with the density matrix renormalization group
    Weir, David J.
    PHYSICAL REVIEW D, 2010, 82 (02):
  • [30] Quantum Phase Transition of a Quantum Mixed Spin Chain by Employing Density Matrix Renormalization Group Method
    Yang, Sheng
    Xu, Jing-Bo
    ANNALEN DER PHYSIK, 2021, 533 (05)