A Classical Background for the Wave Function Prediction in the Infinite System Density Matrix Renormalization Group Method

被引:10
|
作者
Ueda, Hiroshi [1 ]
Gendiar, Andrej [2 ]
Nishino, Tomotoshi [3 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Dept Mat Engn Sci, Osaka 5608531, Japan
[2] Slovak Acad Sci, Inst Elect Engn, SK-84104 Bratislava, Slovakia
[3] Kobe Univ, Grad Sch Sci, Dept Phys, Kobe, Hyogo 6578501, Japan
关键词
DMRG; PWFRG; CTMRG; renormalization; QUANTUM SPIN CHAINS; MAGNETIZATION PROCESS; PHASE-TRANSITION; SURFACE; STATES; POINT; ANTIFERROMAGNETS; LATTICE; MODEL;
D O I
10.1143/JPSJ.79.044001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a physical background of the wave function prediction in the infinite system density matrix renormalization group (DMRG) method, from the view point of two-dimensional vertex model, a typical lattice model in statistical mechanics. Singular value decomposition applied to rectangular corner transfer matrices naturally draws matrix product representation for the maximal eigenvector of the row-to-row transfer matrix. The wave function prediction can be expressed as the insertion of an approximate half-column transfer matrix. This insertion process is in accordance with the scheme proposed by McCulloch recently.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Luttinger liquid physics from the infinite-system density matrix renormalization group
    Karrasch, C.
    Moore, J. E.
    PHYSICAL REVIEW B, 2012, 86 (15):
  • [2] Infinite density matrix renormalization group for multicomponent quantum Hall systems
    Zaletel, Michael P.
    Mong, Roger S. K.
    Pollmann, Frank
    Rezayi, Edward H.
    PHYSICAL REVIEW B, 2015, 91 (04)
  • [3] The Density Matrix Renormalization Group in Quantum Chemistry
    Chan, Garnet Kin-Lic
    Sharma, Sandeep
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, VOL 62, 2011, 62 : 465 - 481
  • [4] Infinite-Size Density Matrix Renormalization Group with Parallel Hida's Algorithm
    Ueda, Hiroshi
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (07)
  • [5] Density Matrix Renormalization Group with Tensor Processing Units
    Ganahl, Martin
    Beall, Jackson
    Hauru, Markus
    Lewis, Adam G. M.
    Wojno, Tomasz
    Yoo, Jae Hyeon
    Zou, Yijian
    Vidal, Guifre
    PRX QUANTUM, 2023, 4 (01):
  • [6] The density-matrix renormalization group in the age of matrix product states
    Schollwoeck, Ulrich
    ANNALS OF PHYSICS, 2011, 326 (01) : 96 - 192
  • [7] Massively parallel quantum chemical density matrix renormalization group method
    Brabec, Jiri
    Brandejs, Jan
    Kowalski, Karol
    Xantheas, Sotiris
    Legeza, Ors
    Veis, Libor
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (08) : 545 - 551
  • [8] Frequency Domain Density Matrix Renormalization Group
    Jiang, Tong
    Ren, Jiajun
    Shuai, Zhigang
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (12): : 2610 - 2628
  • [9] Phase diagram of the anisotropic spin-2 XXZ model: Infinite-system density matrix renormalization group study
    Kjaell, Jonas A.
    Zaletel, Michael P.
    Mong, Roger S. K.
    Bardarson, Jens H.
    Pollmann, Frank
    PHYSICAL REVIEW B, 2013, 87 (23)
  • [10] A density matrix renormalization group method study of optical properties of porphines and metalloporphines
    Kumar, Manoranjan
    Pati, Y. Anusooya
    Ramasesha, S.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (01):