A Convolution Neural Network-Based Representative Spatio-Temporal Documents Classification for Big Text Data

被引:3
|
作者
Kim, Byoungwook [1 ]
Yang, Yeongwook [2 ]
Park, Ji Su [3 ]
Jang, Hong-Jun [3 ]
机构
[1] Dongshin Univ, Dept Comp Sci & Engn, Naju 58245, South Korea
[2] Hanshin Univ, Div Comp Engn, Osan 18101, South Korea
[3] Jeonju Univ, Dept Comp Sci & Engn, Jeonju 55069, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 08期
基金
新加坡国家研究基金会;
关键词
convolution neural network; spatio-temporal document; document classification; big text data; CNN;
D O I
10.3390/app12083843
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the proliferation of mobile devices, the amount of social media users and online news articles are rapidly increasing, and text information online is accumulating as big data. As spatio-temporal information becomes more important, research on extracting spatiotemporal information from online text data and utilizing it for event analysis is being actively conducted. However, if spatiotemporal information that does not describe the core subject of a document is extracted, it is rather difficult to guarantee the accuracy of core event analysis. Therefore, it is important to extract spatiotemporal information that describes the core topic of a document. In this study, spatio-temporal information describing the core topic of a document is defined as 'representative spatio-temporal information', and documents containing representative spatiotemporal information are defined as 'representative spatio-temporal documents'. We proposed a character-level Convolution Neuron Network (CNN)-based document classifier to classify representative spatio-temporal documents. To train the proposed CNN model, 7400 training data were constructed for representative spatio-temporal documents. The experimental results show that the proposed CNN model outperforms traditional machine learning classifiers and existing CNN-based classifiers.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] SPATIO-TEMPORAL CROP CLASSIFICATION ON VOLUMETRIC DATA
    Qadeer, Muhammad Usman
    Saeed, Salar
    Taj, Murtaza
    Muhammad, Abubakr
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3812 - 3816
  • [42] Rice Knowledge Text Classification Based on Deep Convolution Neural Network
    Feng S.
    Xu T.
    Zhou Y.
    Zhao D.
    Jin N.
    Wang H.
    Xu, Tongyu (yatongmu@163.com), 1600, Chinese Society of Agricultural Machinery (52): : 257 - 264
  • [43] Text Classification Based on Graph Convolution Neural Network and Attention Mechanism
    Zhai, Sheping
    Zhang, Wenqing
    Cheng, Dabao
    Bai, Xiaoxia
    ACM International Conference Proceeding Series, 2022, : 137 - 142
  • [44] Spatio-temporal data classification using CVNNs
    Zahradnik, Jakub
    Skrbek, Miroslav
    SIMULATION MODELLING PRACTICE AND THEORY, 2013, 33 : 81 - 88
  • [45] A Key Sentences Based Convolution Neural Network for Text Sentiment Classification
    Mohan, Zhang
    Yang, Xiang
    2019 3RD INTERNATIONAL CONFERENCE ON MACHINE VISION AND INFORMATION TECHNOLOGY (CMVIT 2019), 2019, 1229
  • [46] Tyson Polygon Construction Based on Spatio-temporal Data Network
    Bi, Xiaoming
    INTERNATIONAL JOURNAL OF WIRELESS INFORMATION NETWORKS, 2020, 27 (02) : 289 - 298
  • [47] Tyson Polygon Construction Based on Spatio-temporal Data Network
    Xiaoming Bi
    International Journal of Wireless Information Networks, 2020, 27 : 289 - 298
  • [48] Spatio-temporal modeling of global ozone data using convolution
    Yang Li
    Zhengyuan Zhu
    Japanese Journal of Statistics and Data Science, 2020, 3 : 153 - 166
  • [49] Spatio-temporal modeling of global ozone data using convolution
    Li, Yang
    Zhu, Zhengyuan
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (01) : 153 - 166
  • [50] Spaten: a Spatio-temporal and Textual Big Data Generator
    Doudali, Thaleia Dimitra
    Konstantinou, Ioannis
    Koziris, Nectarios
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 3416 - 3421